scholarly journals Differential 3’ Processing of Specific Transcripts Expands Regulatory and Protein Diversity Across Neuronal Cell Types

2018 ◽  
Author(s):  
Saša Jereb ◽  
Hun-Way Hwang ◽  
Eric Van Otterloo ◽  
Eve-Ellen Govek ◽  
John J. Fak ◽  
...  

ABSTRACTAlternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Saša Jereb ◽  
Hun-Way Hwang ◽  
Eric Van Otterloo ◽  
Eve-Ellen Govek ◽  
John J Fak ◽  
...  

Alternative polyadenylation (APA) regulates mRNA translation, stability, and protein localization. However, it is unclear to what extent APA regulates these processes uniquely in specific cell types. Using a new technique, cTag-PAPERCLIP, we discovered significant differences in APA between the principal types of mouse cerebellar neurons, the Purkinje and granule cells, as well as between proliferating and differentiated granule cells. Transcripts that differed in APA in these comparisons were enriched in key neuronal functions and many differed in coding sequence in addition to 3’UTR length. We characterize Memo1, a transcript that shifted from expressing a short 3’UTR isoform to a longer one during granule cell differentiation. We show that Memo1 regulates granule cell precursor proliferation and that its long 3’UTR isoform is targeted by miR-124, contributing to its downregulation during development. Our findings provide insight into roles for APA in specific cell types and establish a platform for further functional studies.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vikram Agarwal ◽  
Sereno Lopez-Darwin ◽  
David R. Kelley ◽  
Jay Shendure

Abstract3′ untranslated regions (3′ UTRs) post-transcriptionally regulate mRNA stability, localization, and translation rate. While 3′-UTR isoforms have been globally quantified in limited cell types using bulk measurements, their differential usage among cell types during mammalian development remains poorly characterized. In this study, we examine a dataset comprising ~2 million nuclei spanning E9.5–E13.5 of mouse embryonic development to quantify transcriptome-wide changes in alternative polyadenylation (APA). We observe a global lengthening of 3′ UTRs across embryonic stages in all cell types, although we detect shorter 3′ UTRs in hematopoietic lineages and longer 3′ UTRs in neuronal cell types within each stage. An analysis of RNA-binding protein (RBP) dynamics identifies ELAV-like family members, which are concomitantly induced in neuronal lineages and developmental stages experiencing 3′-UTR lengthening, as putative regulators of APA. By measuring 3′-UTR isoforms in an expansive single cell dataset, our work provides a transcriptome-wide and organism-wide map of the dynamic landscape of alternative polyadenylation during mammalian organogenesis.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 709
Author(s):  
Ying Wang ◽  
Weixing Feng ◽  
Siwen Xu ◽  
Bo He

Cleavage and polyadenylation are essential processes that can impact many aspects of mRNA fate. Most eukaryotic genes have alternative polyadenylation (APA) events. While the heterogeneity of mRNA polyadenylation isoform choice has been studied in specific tissues, less attention has been paid to the neuronal heterogeneity of APA selection at single-nucleus resolution. APA is highly controlled during development and neuronal activation, however, to what extent APA events vary in a specific neuronal cell population and the regulatory mechanisms are still unclear. In this paper, we investigated dynamic APA usage in different cell types using snRNA-seq data of 1424 human brain cells generated by single-cell 3′ RNA sequencing. We found that distal APA sites are not only favored by global neuronal cells, but that their usage also varies between the principal types of neuronal cell populations (excitatory neurons and inhibitory neurons). A motif analysis and a gene functional analysis indicated the enrichment of RNA-binding protein (RBP) binding sites and neuronal functions for the set of genes with neuron-enhanced distal PAS usage. Our results revealed the extensive involvement of APA regulation in neuronal populations at the single-nucleus level, providing new insights into roles for APA in specific neuronal cell populations, as well as utility in future functional studies.


1987 ◽  
Vol 105 (1) ◽  
pp. 569-576 ◽  
Author(s):  
E Persohn ◽  
M Schachner

The cellular and subcellular localization of the neural cell adhesion molecules L1 and N-CAM was studied by pre- and postembedding immunoelectron microscopic labeling procedures in the developing mouse cerebellar cortex. The salient features of the study are: L1 displays a previously unrecognized restricted expression by particular neuronal cell types (i.e., it is expressed by granule cells but not by stellate and basket cells) and by particular subcellular compartments (i.e., it is expressed on axons but not on dendrites or cell bodies of Purkinje cells). L1 is always expressed on fasciculating axons and on postmitotic, premigratory, and migrating granule cells at sites of neuron-neuron contact, but never at contact sites between neuron and glia, thus strengthening the view that L1 is not involved in granule cell migration as a neuron-glia adhesion molecule. While N-CAM antibodies reacting with the three major components of N-CAM (180, 140, and 120 kD) show a rather uniform labeling of all cell types, antibodies to the 180-kD component (N-CAM180) stain only the postmigratory granule cell bodies supporting the notion that N-CAM180, the N-CAM component with the longest cytoplasmic domain, is not expressed before stable cell contacts are formed. Furthermore, N-CAM180 is only transiently expressed on Purkinje cell dendrites. N-CAM is present in synapses on both pre- and post-synaptic membranes. L1 is expressed only preterminally and not in the subsynaptic membranes. These observations indicate an exquisite degree of fine tuning in adhesion molecule expression during neural development and suggest a rich combinatorial repertoire in the specification of cell surface contacts.


2017 ◽  
Author(s):  
Sebastian Preissl ◽  
Rongxin Fang ◽  
Yuan Zhao ◽  
Ramya Raviram ◽  
Yanxiao Zhang ◽  
...  

ABSTRACTGenome-wide analysis of chromatin accessibility in primary tissues has uncovered millions of candidate regulatory sequences in the human and mouse genomes1–4. However, the heterogeneity of biological samples used in previous studies has prevented a precise understanding of the dynamic chromatin landscape in specific cell types. Here, we show that analysis of the transposase-accessible-chromatin in single nuclei isolated from frozen tissue samples can resolve cellular heterogeneity and delineate transcriptional regulatory sequences in the constituent cell types. Our strategy is based on a combinatorial barcoding assisted single cell assay for transposase-accessible chromatin5 and is optimized for nuclei from flash-frozen primary tissue samples (snATAC-seq). We used this method to examine the mouse forebrain at seven development stages and in adults. From snATAC-seq profiles of more than 15,000 high quality nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell-types in foetal and adult forebrains. We further define cell-type specific cis regulatory sequences and infer potential master transcriptional regulators of each cell population. Our results demonstrate the feasibility of a general approach for identifying cell-type-specific cis regulatory sequences in heterogeneous tissue samples, and provide a rich resource for understanding forebrain development in mammals.


Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1927-1935 ◽  
Author(s):  
J.M. Huard ◽  
C.C. Forster ◽  
M.L. Carter ◽  
P. Sicinski ◽  
M.E. Ross

Formation of brain requires deftly balancing primary genesis of neurons and glia, detection of when sufficient cells of each type have been produced, shutdown of proliferation and removal of excess cells. The region and cell type-specific expression of cell cycle regulatory proteins, such as demonstrated for cyclin D2, may contribute to these processes. If so, regional brain development should be affected by alteration of cyclin expression. To test this hypothesis, the representation of specific cell types was examined in the cerebellum of animals lacking cyclin D2. The loss of this cyclin primarily affected two neuronal populations: granule cell number was reduced and stellate interneurons were nearly absent. Differences between null and wild-type siblings were obvious by the second postnatal week. Decreases in granule cell number arose from both reduction in primary neurogenesis and increase in apoptosis of cells that fail to differentiate. The dearth of stellate cells in the molecular layer indicates that emergence of this subpopulation requires cyclin D2 expression. Surprisingly, Golgi and basket interneurons, thought to originate from the same precursor pool as stellate cells, appear unaffected. These results suggest that cyclin D2 is required in cerebellum not only for proliferation of the granule cell precursors but also for proper differentiation of granule and stellate interneurons.


2020 ◽  
Author(s):  
Aditi Bhargava ◽  
Peter Ohara ◽  
Luc Jasmin

AbstractDelivery of therapeutic moieties to specific cell types, such as neurons remains a challenge. Genes present in neurons are also expressed in non-neuronal cell types such as glia where they mediate non-targeted related functions. Thus, non-specific targeting of these proteins/channels has numerous unwanted side effects, as is the case with current small molecules or drug therapies. Current methodologies that use nanoparticles, lipid-mediated uptake, or mannitol in conjunction with lipids to deliver double-stranded RNA (dsRNA) have yielded mixed and unreliable results. We used a neuroanatomical tracer (B subunit of Cholera Toxin (CTB)) that binds to the ganglioside receptors (GM1) expressed on cells, including primary sensory neurons to deliver encapsulated dsRNA. This approach greatly improved delivery of dsRNA to the desired cells by enhancing uptake, reducing vehicle-mediated toxicity and protecting nucleotides from degradation by endonucleases. The delivery complex is internalized, and once inside the cell, the dsRNA naturally dissociates itself from the carrier complex and is very effective in knocking down cognate targets, both in vivo and in vitro. Past methods have used CTB-fusion proteins or chemically modified oligos or DNA moieties that have been covalently conjugated to CTB. Furthermore, CTB conjugated to an antigen, protein, or chemically modified nucleic acid is a potent activator of immune cell (T and B cells, macrophages) response, whereas CTB admixed with antigens or unmodified nucleic acids does not evoke this immune response. Importantly, in our method, the nucleic acids are not covalently linked to the carrier molecules. Thus, our method holds strong potential for targeted delivery of therapeutic moieties for cell types expressing GM1 receptors, including neuronal cell types.


2018 ◽  
Author(s):  
Ryan T. Willett ◽  
Alexandre Wojcinski ◽  
N. Sumru Bayin ◽  
Zhimin Lao ◽  
Daniel Stephen ◽  
...  

AbstractEfficient function of neural systems requires the production of specific cell types in the correct proportions. Here we report that reduction of the earliest born neurons of the cerebellum, excitatory cerebellar nuclei neurons (eCN), results in a subsequent reduction in growth of the cerebellar cortex due to an accompanying loss of their presynaptic target Purkinje cells. Conditional knockout of the homeobox genes En1 and En2 (En1/2) in the rhombic lip-derived eCN and granule cell precursors leads to embryonic loss of a subset of medial eCN and cell non-autonomous and location specific loss of Purkinje cells, with subsequent proportional scaling down of cortex growth. We propose that subsets of eCN dictate the survival of their specific Purkinje cell partners, and in turn sonic hedgehog secreted by Purkinje cells scales the expansion of granule cells and interneurons to produce functional local circuits and the proper folded morphology of the cerebellum.


2020 ◽  
Author(s):  
Benjamin C. Reiner ◽  
Richard C. Crist ◽  
Lauren M. Stein ◽  
Andrew E. Weller ◽  
Glenn A. Doyle ◽  
...  

AbstractTranscriptomic studies of bulk neural tissue homogenates from persons with schizophrenia and controls have identified differentially expressed genes in multiple brain regions. However, the heterogeneous nature prevents identification of relevant cell types. This study analyzed single-nuclei transcriptomics of ∼311,000 nuclei from frozen human postmortem dorsolateral prefrontal cortex samples from individuals with schizophrenia (n = 14) and controls (n = 16). 2,846 differential expression events were identified in 2,195 unique genes in 19 of 24 transcriptomically-distinct cell populations. ∼97% of differentially expressed genes occurred in five neuronal cell types, with ∼63% occurring in a subtype of PVALB+ inhibitory neurons and HTR2C+ layer V excitatory neurons. Differentially expressed genes were enriched for genes localized to schizophrenia GWAS loci. Cluster-specific changes in canonical pathways, upstream regulators and causal networks were identified. These results expand our knowledge of disrupted gene expression in specific cell types and permit new insight into the pathophysiology of schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document