scholarly journals Pleiotropic and Epistatic Network-Based Discovery: Integrated Networks for Target Gene Discovery

2018 ◽  
Author(s):  
Deborah Weighill ◽  
Piet Jones ◽  
Manesh Shah ◽  
Priya Ranjan ◽  
Wellington Muchero ◽  
...  

AbstractBiological organisms are complex systems that are composed of functional networks of interacting molecules and macromolecules. Complex phenotypes are the result of orchestrated, hierarchical, heterogeneous collections of expressed genomic variants. However, the effects of these variants are the result of historic selective pressure and current environmental and epigenetic signals, and, as such, their co-occurrence can be seen as genome-wide correlations in a number of different manners. Biomass recalcitrance (i.e., the resistance of plants to degradation or deconstruction, which ultimately enables access to a plant’s sugars) is a complex polygenic phenotype of high importance to biofuels initiatives. This study makes use of data derived from the re-sequenced genomes from over 800 different Populus trichocarpa genotypes in combination with metabolomic and pyMBMS data across this population, as well as co-expression and co-methylation networks in order to better understand the molecular interactions involved in recalcitrance, and identify target genes involved in lignin biosynthesis/degradation. A Lines Of Evidence (LOE) scoring system is developed to integrate the information in the different layers and quantify the number of lines of evidence linking genes to lignin-related lignin-phenotypes across the network layers. The resulting Genome Wide Association Study networks, integrated with Single Nucleotide Polymorphism (SNP) correlation, co-methylation and co-expression networks through the LOE scores are proving to be a powerful approach to determine the pleiotropic and epistatic relationships underlying cellular functions and, as such, the molecular basis for complex phenotypes, such as recalcitrance.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alvaro N. Barbeira ◽  
◽  
Rodrigo Bonazzola ◽  
Eric R. Gamazon ◽  
Yanyu Liang ◽  
...  

AbstractThe resources generated by the GTEx consortium offer unprecedented opportunities to advance our understanding of the biology of human diseases. Here, we present an in-depth examination of the phenotypic consequences of transcriptome regulation and a blueprint for the functional interpretation of genome-wide association study-discovered loci. Across a broad set of complex traits and diseases, we demonstrate widespread dose-dependent effects of RNA expression and splicing. We develop a data-driven framework to benchmark methods that prioritize causal genes and find no single approach outperforms the combination of multiple approaches. Using colocalization and association approaches that take into account the observed allelic heterogeneity of gene expression, we propose potential target genes for 47% (2519 out of 5385) of the GWAS loci examined.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hari B. Chhetri ◽  
Anna Furches ◽  
David Macaya-Sanz ◽  
Alejandro R. Walker ◽  
David Kainer ◽  
...  

2021 ◽  
Vol 53 (9) ◽  
pp. 1290-1299
Author(s):  
Nurlan Kerimov ◽  
James D. Hayhurst ◽  
Kateryna Peikova ◽  
Jonathan R. Manning ◽  
Peter Walter ◽  
...  

AbstractMany gene expression quantitative trait locus (eQTL) studies have published their summary statistics, which can be used to gain insight into complex human traits by downstream analyses, such as fine mapping and co-localization. However, technical differences between these datasets are a barrier to their widespread use. Consequently, target genes for most genome-wide association study (GWAS) signals have still not been identified. In the present study, we present the eQTL Catalogue (https://www.ebi.ac.uk/eqtl), a resource of quality-controlled, uniformly re-computed gene expression and splicing QTLs from 21 studies. We find that, for matching cell types and tissues, the eQTL effect sizes are highly reproducible between studies. Although most QTLs were shared between most bulk tissues, we identified a greater diversity of cell-type-specific QTLs from purified cell types, a subset of which also manifested as new disease co-localizations. Our summary statistics are freely available to enable the systematic interpretation of human GWAS associations across many cell types and tissues.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 293 ◽  
Author(s):  
Lee ◽  
Kang ◽  
Kim

: Early stage prediction of economic trait performance is important and directly linked to profitability of farm pig production. Genome-wide association study (GWAS) has been applied to find causative genomic regions of traits. This study established a regulatory gene network using GWAS for critical economic pig characteristics, centered on easily measurable body fat thickness in live animals. We genotyped 2,681 pigs using Illumina Porcine SNP60, followed by GWAS to calculate Bayes factors for 47,697 single nucleotide polymorphisms (SNPs) of seven traits. Using this information, SNPs were annotated with specific genes near genome locations to establish the association weight matrix. The entire network consisted of 226 nodes and 6,921 significant edges. For in silico validation of their interactions, we conducted regulatory sequence analysis of predicted target genes of transcription factors (TFs). Three key regulatory TFs were identified to guarantee maximum coverage: AT-rich interaction domain 3B (ARID3B), glial cell missing homolog 1 (GCM1), and GLI family zinc finger 2 (GLI2). We identified numerous genes targeted by ARID3B, associated with cellular processes. GCM1 and GLI2 were involved in developmental processes, and their shared target genes regulated multicellular organismal process. This system biology-based function analysis might contribute to enhancing understanding of economic pig traits.


Blood ◽  
2010 ◽  
Vol 115 (5) ◽  
pp. 975-984 ◽  
Author(s):  
Katia Basso ◽  
Masumichi Saito ◽  
Pavel Sumazin ◽  
Adam A. Margolin ◽  
Kai Wang ◽  
...  

Abstract BCL6 is a transcriptional repressor required for mature B-cell germinal center (GC) formation and implicated in lymphomagenesis. BCL6's physiologic function is only partially known because the complete set of its targets in GC B cells has not been identified. To address this issue, we used an integrated biochemical-computational-functional approach to identify BCL6 direct targets in normal GC B cells. This approach includes (1) identification of BCL6-bound promoters by genome-wide chromatin immunoprecipitation, (2) inference of transcriptional relationships by the use of a regulatory network reverse engineering approach (ARACNe), and (3) validation of physiologic relevance of the candidate targets down-regulated in GC B cells. Our approach demonstrated that a large set of promoters (> 4000) is physically bound by BCL6 but that only a fraction of them is repressed in GC B cells. This set of 1207 targets identifies several cellular functions directly controlled by BCL6 during GC development, including activation, survival, DNA-damage response, cell cycle arrest, cytokine signaling, Toll-like receptor signaling, and differentiation. These results define a broad role of BCL6 in preventing centroblasts from responding to signals leading to exit from the GC before they complete the phase of proliferative expansion and of antibody affinity maturaton.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Shu-Yun Chen ◽  
Mei-Hsiu Su ◽  
Karl A. Kremling ◽  
Nicholas K. Lepak ◽  
M. Cinta Romay ◽  
...  

Abstract Background MiRNAs play essential roles in plant development and response to biotic and abiotic stresses through interaction with their target genes. The expression level of miRNAs shows great variations among different plant accessions, developmental stages, and tissues. Little is known about the content within the plant genome contributing to the variations in plants. This study aims to identify miRNA expression-related quantitative trait loci (miR-QTLs) in the maize genome. Results The miRNA expression level from next generation sequencing (NGS) small RNA libraries derived from mature leaf samples of the maize panel (200 maize lines) was estimated as phenotypes, and maize Hapmap v3.2.1 was chosen as the genotype for the genome-wide association study (GWAS). A total of four significant miR-eQTLs were identified contributing to miR156k-5p, miR159a-3p, miR390a-5p and miR396e-5p, and all of them are trans-eQTLs. In addition, a strong positive coexpression of miRNA was found among five miRNA families. Investigation of the effects of these miRNAs on the expression levels and target genes provided evidence that miRNAs control the expression of their targets by suppression and enhancement. Conclusions These identified significant miR-eQTLs contribute to the diversity of miRNA expression in the maize penal at the developmental stages of mature leaves in maize, and the positive and negative regulation between miRNA and its target genes has also been uncovered.


2019 ◽  
Author(s):  
Alvaro N Barbeira ◽  
Rodrigo Bonazzola ◽  
Eric R Gamazon ◽  
Yanyu Liang ◽  
YoSon Park ◽  
...  

AbstractThe resources generated by the GTEx consortium offer unprecedented opportunities to advance our understanding of the biology of human diseases. Here, we present an in-depth examination of the phenotypic consequences of transcriptome regulation and a blueprint for the functional interpretation of genome-wide association study-discovered loci. Across a broad set of complex traits and diseases, we demonstrate widespread dose-dependent effects of RNA expression and splicing. We develop a data-driven framework to benchmark methods that prioritize causal genes and find no single approach outperforms the combination of multiple approaches. Using colocalization and association approaches that take into account the observed allelic heterogeneity of gene expression, we propose potential target genes for 47% (2,519 out of 5,385) of the GWAS loci examined. Our results demonstrate the translational relevance of the GTEx resources and highlight the need to increase their resolution and breadth to further our understanding of the genotype-phenotype link.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2887-2895 ◽  
Author(s):  
Claudia Hoemme ◽  
Abdul Peerzada ◽  
Gerhard Behre ◽  
Yipeng Wang ◽  
Michael McClelland ◽  
...  

The translocation t(15;17) generates the chimeric PML-RARα transcription factor that is the initiating event of acute promyelocytic leukemia. A global view of PML-RARα transcriptional functions was obtained by genome-wide binding and chromatin modification analyses combined with genome-wide expression data. Chromatin immunoprecipitation (ChIP)–chip experiments identified 372 direct genomic PML-RARα targets. A subset of these was confirmed in primary acute promyelocytic leukemia. Direct PML-RARα targets include regulators of global transcriptional programs as well as critical regulatory genes for basic cellular functions such as cell-cycle control and apoptosis. PML-RARα binding universally led to HDAC1 recruitment, loss of histone H3 acetylation, increased tri-methylation of histone H3 lysine 9, and unexpectedly increased trimethylation of histone H3 lysine 4. The binding of PML-RARα to target promoters and the resulting histone modifications resulted in mRNA repression of functionally relevant genes. Taken together, our results reveal that the transcription factor PML-RARα regulates key cancer-related genes and pathways by inducing a repressed chromatin formation on its direct genomic target genes.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Elena López-Isac ◽  
◽  
Marialbert Acosta-Herrera ◽  
Martin Kerick ◽  
Shervin Assassi ◽  
...  

Abstract Systemic sclerosis (SSc) is an autoimmune disease that shows one of the highest mortality rates among rheumatic diseases. We perform a large genome-wide association study (GWAS), and meta-analysis with previous GWASs, in 26,679 individuals and identify 27 independent genome-wide associated signals, including 13 new risk loci. The novel associations nearly double the number of genome-wide hits reported for SSc thus far. We define 95% credible sets of less than 5 likely causal variants in 12 loci. Additionally, we identify specific SSc subtype-associated signals. Functional analysis of high-priority variants shows the potential function of SSc signals, with the identification of 43 robust target genes through HiChIP. Our results point towards molecular pathways potentially involved in vasculopathy and fibrosis, two main hallmarks in SSc, and highlight the spectrum of critical cell types for the disease. This work supports a better understanding of the genetic basis of SSc and provides directions for future functional experiments.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaokang Zhuo ◽  
Tangchun Zheng ◽  
Suzhen Li ◽  
Zhiyong Zhang ◽  
Man Zhang ◽  
...  

AbstractWeeping Prunus mume (mei) has long been cultivated in East Asia for its specific ornamental value. However, little is known about the regulatory mechanism of the weeping trait in mei, which limits molecular breeding for the improvement of weeping-type cultivars. Here, we quantified the weeping trait in mei using nested phenotyping of 214 accessions and 342 F1 hybrids. Two major associated loci were identified from the genome-wide association study (GWAS), which was conducted using 3,014,409 single nucleotide polymorphisms (SNPs) derived from resequencing, and 8 QTLs and 55 epistatic loci were identified from QTL mapping using 7,545 specific lengths amplified fragment (SLAF) markers. Notably, an overlapping PmWEEP major QTL was fine mapped within a 0.29 Mb region on chromosome 7 (Pa7), and a core SNP locus closely associated with the weeping trait was screened and validated. Furthermore, a total of 22 genes in the PmWEEP QTL region were expressed in weeping or upright mei based on RNA-seq analysis. Among them, only a novel gene (Pm024213) containing a thioredoxin (Trx) domain was found to be close to the core SNP and specifically expressed in buds and branches of weeping mei. Co-expression analysis of Pm024213 showed that most of the related genes were involved in auxin and lignin biosynthesis. These findings provide insights into the regulatory mechanism of the weeping trait and effective molecular markers for molecular-assisted breeding in Prunus mume.


Sign in / Sign up

Export Citation Format

Share Document