scholarly journals Synthetic-evolution reveals that phosphoregulation of the mitotic kinesin-5 Cin8 is constrained

2018 ◽  
Author(s):  
Alina Goldstein ◽  
Darya Goldman ◽  
Ervin Valk ◽  
Mart Loog ◽  
Liam J. Holt ◽  
...  

AbstractCdk1 has been found to phosphorylate the majority of its substrates in disordered regions. These phosphorylation sites do not appear to require precise positioning for their function. The mitotic kinesin-5 Cin8 was shown to be phosphoregulated at three Cdk1 sites in disordered loops within its catalytic motor domain. Here, we examined the flexibility of Cin8 phosphoregulation by analyzing the phenotypes of synthetic Cdk1-sites that were systematically generated by single amino-acid substitutions, starting from a phosphodeficient variant of Cin8. Out of 29 synthetic Cdk1 sites that we created, eight were non-functional; 19 were neutral, similar to the phosphodeficient variant; and two gave rise to phosphorylation-dependent spindle phenotypes. Of these two, one site resulted in novel phosphoregulation, and only one site, immediately adjacent to a native Cdk1 site, produced phosphoregulation similar to wild-type. This study shows that, while the gain of a single phosphorylation site can confer regulation and modulate the dynamics of the spindle, to achieve optimal regulation of a mitotic kinesin-5 motor protein, phosphoregulation has to be site-specific and precise.

mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Manabu Aoki ◽  
Debananda Das ◽  
Hironori Hayashi ◽  
Hiromi Aoki-Ogata ◽  
Yuki Takamatsu ◽  
...  

ABSTRACTDarunavir (DRV) has bimodal activity against HIV-1 protease, enzymatic inhibition and protease dimerization inhibition, and has an extremely high genetic barrier against development of drug resistance. We previously generated a highly DRV-resistant HIV-1 variant (HIVDRVRP51). We also reported that four amino acid substitutions (V32I, L33F, I54M, and I84V) identified in the protease of HIVDRVRP51are largely responsible for its high-level resistance to DRV. Here, we attempted to elucidate the role of each of the four amino acid substitutions in the development of DRV resistance. We found that V32I is a key substitution, which rarely occurs, but once it occurs, it predisposes HIV-1 to develop high-level DRV resistance. When two infectious recombinant HIV-1 clones carrying I54M and I84V (rHIVI54Mand rHIVI84V, respectively) were selected in the presence of DRV, V32I emerged, and the virus rapidly developed high-level DRV resistance. rHIVV32Ialso developed high-level DRV resistance. However, wild-type HIVNL4-3(rHIVWT) failed to acquire V32I and did not develop DRV resistance. Compared to rHIVWT, rHIVV32Iwas highly susceptible to DRV and had significantly reduced fitness, explaining why V32I did not emerge upon selection of rHIVWTwith DRV. When the only substitution is at residue 32, structural analysis revealed much stronger van der Waals interactions between DRV and I-32 than between DRV and V-32. These results suggest that V32I is a critical amino acid substitution in multiple pathways toward HIV-1’s DRV resistance development and elucidate, at least in part, a mechanism of DRV’s high genetic barrier to development of drug resistance. The results also show that attention should be paid to the initiation or continuation of DRV-containing regimens in people with HIV-1 containing the V32I substitution.IMPORTANCEDarunavir (DRV) is the only protease inhibitor (PI) recommended as a first-line therapeutic and represents the most widely used PI for treating HIV-1-infected individuals. DRV possesses a high genetic barrier to development of HIV-1’s drug resistance. However, the mechanism(s) of the DRV’s high genetic barrier remains unclear. Here, we show that the preexistence of certain single amino acid substitutions such as V32I, I54M, A71V, and I84V in HIV-1 protease facilitates the development of high-level DRV resistance. Interestingly, allin vitro-selected highly DRV-resistant HIV-1 variants acquired V32I but never emerged in wild-type HIV (HIVWT), and V32I itself rendered HIV-1 more sensitive to DRV and reduced viral fitness compared to HIVWT, strongly suggesting that the emergence of V32I plays a critical role in the development of HIV-1’s resistance to DRV. Our results would be of benefit in the treatment of HIV-1-infected patients receiving DRV-containing regimens.


Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 167-175 ◽  
Author(s):  
J. Palka ◽  
M. Schubiger ◽  
H. Schwaninger

The best studied mutations at the Notch locus produce a neurogenic phenotype, with a massive overgrowth of the nervous system at the expense of epidermis. We report here that, in the development of the adult peripheral nervous system, the Abruptex alleles of Notch have the opposite phenotype, namely an underproduction of sensory organs or sensilla. This arises primarily not from an arrest of the lineages that produce sensilla, from the degeneration of sensillar cells, or from the transformation into neurons of cells that normally secrete the cuticular components of a sensillum (as can happen in Notch alleles). Rather, our evidence argues strongly that the sensillar mother cells never form. This implies that the Notch protein plays a role in the process that first generates a difference between sensillar mother cells and ordinary epidermal cells. The number of sensilla formed on the wing of flies carrying multiple doses of Notch+ is virtually the same as that of wild type, i.e. the Abruptex phenotype is not reproduced to any significant extent. This suggests that the single amino acid substitutions that occur in Abruptex mutants confer on the protein some functionally distinctive feature, possibly more powerful intermolecular binding or altered stability.


Genetics ◽  
1993 ◽  
Vol 135 (1) ◽  
pp. 45-52 ◽  
Author(s):  
C Deleu ◽  
C Clavé ◽  
J Bégueret

Abstract Vegetative incompatibility is known to limit heterokaryosis in filamentous fungi. It results from genetic differences between incompatible strains at specific loci. The proteins encoded by the two incompatible alleles het-s and het-S of the fungus Podospora anserina differ from each other by 14 amino acids. Two approaches have been used to identify how many and which of these differences are necessary to elicit incompatibility. Twelve alleles of the het-s locus of wild-type isolates of P. anserina and of the related species Podospora comata have been sequenced to determine the extent of the variability of genes controlling s and S specificities. Expression of hybrid het-s/het-S genes and site-specific mutagenesis revealed that the specificities of het-s and het-S are under the control of a limited number of amino acid differences. The results show that vegetative incompatibility between s and S strains can be attributed to a single amino acid difference in the proteins encoded by the het-s locus.


1998 ◽  
Vol 66 (10) ◽  
pp. 4823-4831 ◽  
Author(s):  
Wolfram R. Zückert ◽  
Hélène Marquis ◽  
Howard Goldfine

ABSTRACT The secreted broad-range phosphatidylcholine (PC)-preferring phospholipase C (PC-PLC) of Listeria monocytogenes plays a role in the bacterium’s ability to escape from phagosomes and spread from cell to cell. Based on comparisons with two orthologs,Clostridium perfringens α-toxin and Bacillus cereus PLC (PLCBc), we generated PC-PLC mutants with altered enzymatic activities and substrate specificities and analyzed them for biological function in tissue culture and mouse models of infection. Two of the conserved active-site zinc-coordinating histidines were confirmed by single amino acid substitutions H69G and H118G, which resulted in proteins inactive in broth culture and unstable intracellularly. Substitutions D4E and H56Y remodeled the PC-PLC active site to more closely resemble the PLCBc active site, while a gene replacement resulted inL. monocytogenes secreting PLCBc. All of these mutants yielded similar amounts of active enzyme as wild-type PC-PLC both in broth culture and intracellularly. D4E increased activity on and specificity for PC, while H56Y and D4E H56Y showed higher activity on both PC and sphingomyelin, with reduced specificity for PC. As expected, PLCBc expressed by L. monocytogenes was highly specific for PC. During early intracellular growth in human epithelial cells, the D4E mutant and the PLCBc-expressing strain performed significantly better than the wild type, while the H56Y and D4E H56Y mutants showed a significant defect. In assays for cell-to-cell spread, the H56Y and D4E mutants had close to wild-type characteristics, while the spreading efficiency of PLCBc was significantly lower. These studies emphasize the species-specific features of PC-PLC important for growth in mammalian cells.


1992 ◽  
Vol 175 (6) ◽  
pp. 1553-1563 ◽  
Author(s):  
E A Nalefski ◽  
S Kasibhatla ◽  
A Rao

We have identified residues on a T cell receptor (TCR) alpha chain that are important for interaction with antigen/major histocompatibility complex (MHC). Using site-directed mutagenesis, we modified DNA encoding the postulated antigen/MHC binding loops on the TCR alpha chain expressed by the T cell clone D5, which recognizes p-azobenzenearsonate-conjugated antigens presented by cells bearing I-Ad. These variant TCR alpha chains were expressed in conjunction with the wild-type D5 TCR beta chain on the surface of hybridoma cells, and were tested for the ability to recognize hapten-conjugated antigens presented by I-Ad. Individual amino acid substitutions in each of the three antigen binding loops (alpha 1, alpha 2, alpha 3) of the D5 TCR alpha chain affected antigen recognition, demonstrating that all three loops are important in recognition of antigen/MHC. A subset of the single amino acid substitutions completely eliminated antigen recognition, thus identifying the residues that are particularly important in the recognition of antigenic peptide/MHC by the D5 TCR. Because the wild-type D5 TCR recognizes arsonate and certain structural analogues of arsonate conjugated to a variety of protein antigens, we were able to test whether the TCR substitutions affected the specificity of the D5 TCR for hapten or carrier antigen. One substitution introduced into antigen binding loop alpha 3 markedly altered the pattern of carrier recognition. Together, these results verify the Ig model for the TCR and are consistent with the proposition that residues forming the first and second antigen binding loops of the TCR contact the MHC, while those forming the third loop contact mainly antigenic peptides.


2006 ◽  
Vol 80 (15) ◽  
pp. 7740-7743 ◽  
Author(s):  
Jeremy R. Thompson ◽  
Stephanie Doun ◽  
Keith L. Perry

ABSTRACT Cucumber mosaic virus (CMV) systemically infects both tobacco and zucchini squash. CMV capsid protein loop mutants with single-amino-acid substitutions are unable to systemically infect squash, but they revert to a wild-type phenotype in the presence of an additional, specific single-site substitution. The D118A, T120A, D192A, and D197A loop mutants reverted to a wild-type phenotype but did so in combination with P56S, P77L, A162V, and I53F or T124I mutations, respectively. The possible effect of these compensatory mutations on other, nonsystemically infecting loop mutants was tested with the F117A mutant and found to be neutral, thus indicating a specificity to the observed changes.


1992 ◽  
Vol 68 (06) ◽  
pp. 672-677 ◽  
Author(s):  
Hitoshi Yahara ◽  
Keiji Matsumoto ◽  
Hiroyuki Maruyama ◽  
Tetsuya Nagaoka ◽  
Yasuhiro Ikenaka ◽  
...  

SummaryTissue-type plasminogen activator (t-PA) is a fibrin-specific agent which has been used to treat acute myocardial infarction. In an attempt to clarify the determinants for its rapid clearance in vivo and high affinity for fibrin clots, we produced five variants containing amino acid substitutions in the finger domain, at amino acid residues 7–9, 10–14, 15–19, 28–33, and 37–42. All the variants had a prolonged half-life and a decreased affinity for fibrin of various degrees. The 37–42 variant demonstrated about a 6-fold longer half-life with a lower affinity for fibrin. Human plasma clot lysis assay estimated the fibrinolytic activity of the 37–42 variant to be 1.4-fold less effective than that of the wild-type rt-PA. In a rabbit jugular vein clot lysis model, doses of 1.0 and 0.15 mg/kg were required for about 70% lysis in the wild-type and 37–42 variant, respectively. Fibrinogen was degraded only when the wild-type rt-PA was administered at a dose of 1.0 mg/kg. These findings suggest that the 37–42 variant can be employed at a lower dosage and that it is a more fibrin-specific thrombolytic agent than the wild-type rt-PA.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 289
Author(s):  
Kathleen K. M. Glover ◽  
Danica M. Sutherland ◽  
Terence S. Dermody ◽  
Kevin M. Coombs

Studies of conditionally lethal mutants can help delineate the structure-function relationships of biomolecules. Temperature-sensitive (ts) mammalian reovirus (MRV) mutants were isolated and characterized many years ago. Two of the most well-defined MRV ts mutants are tsC447, which contains mutations in the S2 gene encoding viral core protein σ2, and tsG453, which contains mutations in the S4 gene encoding major outer-capsid protein σ3. Because many MRV ts mutants, including both tsC447 and tsG453, encode multiple amino acid substitutions, the specific amino acid substitutions responsible for the ts phenotype are unknown. We used reverse genetics to recover recombinant reoviruses containing the single amino acid polymorphisms present in ts mutants tsC447 and tsG453 and assessed the recombinant viruses for temperature-sensitivity by efficiency-of-plating assays. Of the three amino acid substitutions in the tsG453 S4 gene, Asn16-Lys was solely responsible for the tsG453ts phenotype. Additionally, the mutant tsC447 Ala188-Val mutation did not induce a temperature-sensitive phenotype. This study is the first to employ reverse genetics to identify the dominant amino acid substitutions responsible for the tsC447 and tsG453 mutations and relate these substitutions to respective phenotypes. Further studies of other MRV ts mutants are warranted to define the sequence polymorphisms responsible for temperature sensitivity.


Sign in / Sign up

Export Citation Format

Share Document