scholarly journals Graded and bidirectional control of real-time reach kinematics by the cerebellum

2018 ◽  
Author(s):  
Matthew I. Becker ◽  
Abigail L. Person

AbstractThe rules governing the relationship between cerebellar output and movement production remain unknown despite the well-recognized importance of the cerebellum in motor learning and precision. In this study, we investigated how cerebellar output sculpts reach behavior in mice by manipulating neural activity in the anterior interposed nucleus (IntA) in closed-loop with ongoing behavior. Optogenetic modulation of cerebellar output revealed monotonically graded and bidirectional control of real-time reach velocity by IntA. Furthermore, kinematic effects were relatively context invariant, suggesting that cerebellar output summates with ongoing motor commands generated elsewhere throughout the reaching movement. These results characterize the relationship between cerebellar output modulation and reach behavior as a bidirectional and scalable kinematic command signal. Our findings illustrate how learned, predictive coding in the cerebellar cortex could be actuated through the cerebellar nuclei to contribute in real time to purposive motor control.


2018 ◽  
Vol 120 (6) ◽  
pp. 2975-2987 ◽  
Author(s):  
Brice Williams ◽  
Anderson Speed ◽  
Bilal Haider

The mouse has become an influential model system for investigating the mammalian nervous system. Technologies in mice enable recording and manipulation of neural circuits during tasks where they respond to sensory stimuli by licking for liquid rewards. Precise monitoring of licking during these tasks provides an accessible metric of sensory-motor processing, particularly when combined with simultaneous neural recordings. There are several challenges in designing and implementing lick detectors during head-fixed neurophysiological experiments in mice. First, mice are small, and licking behaviors are easily perturbed or biased by large sensors. Second, neural recordings during licking are highly sensitive to electrical contact artifacts. Third, submillisecond lick detection latencies are required to generate control signals that manipulate neural activity at appropriate time scales. Here we designed, characterized, and implemented a contactless dual-port device that precisely measures directional licking in head-fixed mice performing visual behavior. We first determined the optimal characteristics of our detector through design iteration and then quantified device performance under ideal conditions. We then tested performance during head-fixed mouse behavior with simultaneous neural recordings in vivo. We finally demonstrate our device’s ability to detect directional licks and generate appropriate control signals in real time to rapidly suppress licking behavior via closed-loop inhibition of neural activity. Our dual-port detector is cost effective and easily replicable, and it should enable a wide variety of applications probing the neural circuit basis of sensory perception, motor action, and learning in normal and transgenic mouse models. NEW & NOTEWORTHY Mice readily learn tasks in which they respond to sensory cues by licking for liquid rewards; tasks that involve multiple licking responses allow study of neural circuits underlying decision making and sensory-motor integration. Here we design, characterize, and implement a novel dual-port lick detector that precisely measures directional licking in head-fixed mice performing visual behavior, enabling simultaneous neural recording and closed-loop manipulation of licking.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Miguel Angrick ◽  
Maarten C. Ottenhoff ◽  
Lorenz Diener ◽  
Darius Ivucic ◽  
Gabriel Ivucic ◽  
...  

AbstractSpeech neuroprosthetics aim to provide a natural communication channel to individuals who are unable to speak due to physical or neurological impairments. Real-time synthesis of acoustic speech directly from measured neural activity could enable natural conversations and notably improve quality of life, particularly for individuals who have severely limited means of communication. Recent advances in decoding approaches have led to high quality reconstructions of acoustic speech from invasively measured neural activity. However, most prior research utilizes data collected during open-loop experiments of articulated speech, which might not directly translate to imagined speech processes. Here, we present an approach that synthesizes audible speech in real-time for both imagined and whispered speech conditions. Using a participant implanted with stereotactic depth electrodes, we were able to reliably generate audible speech in real-time. The decoding models rely predominately on frontal activity suggesting that speech processes have similar representations when vocalized, whispered, or imagined. While reconstructed audio is not yet intelligible, our real-time synthesis approach represents an essential step towards investigating how patients will learn to operate a closed-loop speech neuroprosthesis based on imagined speech.



2018 ◽  
Author(s):  
Kensuke Arai ◽  
Daniel F. Liu ◽  
Loren M. Frank ◽  
Uri T. Eden

AbstractReal-time, closed-loop experiments can uncover causal relationships between specific neural activity and behavior. An important advance in realizing this is the marked point process filtering framework which utilizes the “mark” or the waveform features of unsorted spikes, to construct a relationship between these features and behavior, which we call the encoding model. This relationship is not fixed, because learning changes coding properties of individual neurons, and electrodes can physically move during the experiment, changing waveform characteristics. We introduce a sequential, Bayesian encoding model which allows incorporation of new information on the fly to adapt the model in real time. A possible application of this framework is to the decoding of the contents of hippocampal ripples in rats exploring a maze. During physical exploration, we observe the marks and positions at which they occur, to update the encoding model, which is employed to decode contents of ripples when rats stop moving, and switch back to updating the model once the rat starts moving again.



2018 ◽  
Author(s):  
Judith Lim ◽  
Tansu Celikel

AbstractObjectiveClose-loop control of brain and behavior will benefit from real-time detection of behavioral events to enable low-latency communication with peripheral devices. In animal experiments, this is typically achieved by using sparsely distributed (embedded) sensors that detect animal presence in select regions of interest. High-speed cameras provide high-density sampling across large arenas, capturing the richness of animal behavior, however, the image processing bottleneck prohibits real-time feedback in the context of rapidly evolving behaviors.ApproachHere we developed an open-source software, named PolyTouch, to track animal behavior in large arenas and provide rapid close-loop feedback in ~5.7 ms, ie. average latency from the detection of an event to analog stimulus delivery, e.g. auditory tone, TTL pulse, when tracking a single body. This stand-alone software is written in JAVA. The included wrapper for MATLAB provides experimental flexibility for data acquisition, analysis and visualization.Main resultsAs a proof-of-principle application we deployed the PolyTouch for place awareness training. A user-defined portion of the arena was used as a virtual target; visit (or approach) to the target triggered auditory feedback. We show that mice develop awareness to virtual spaces, tend to stay shorter and move faster when they reside in the virtual target zone if their visits are coupled to relatively high stimulus intensity (≥49dB). Thus, close-loop presentation of perceived aversive feedback is sufficient to condition mice to avoid virtual targets within the span of a single session (~20min).SignificanceNeuromodulation techniques now allow control of neural activity in a cell-type specific manner in spiking resolution. Using animal behavior to drive closed-loop control of neural activity would help to address the neural basis of behavioral state and environmental context-dependent information processing in the brain.





2005 ◽  
Author(s):  
Harry Funk ◽  
Robert Goldman ◽  
Christopher Miller ◽  
John Meisner ◽  
Peggy Wu


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5209 ◽  
Author(s):  
Andrea Gonzalez-Rodriguez ◽  
Jose L. Ramon ◽  
Vicente Morell ◽  
Gabriel J. Garcia ◽  
Jorge Pomares ◽  
...  

The main goal of this study is to evaluate how to optimally select the best vibrotactile pattern to be used in a closed loop control of upper limb myoelectric prostheses as a feedback of the exerted force. To that end, we assessed both the selection of actuation patterns and the effects of the selection of frequency and amplitude parameters to discriminate between different feedback levels. A single vibrotactile actuator has been used to deliver the vibrations to subjects participating in the experiments. The results show no difference between pattern shapes in terms of feedback perception. Similarly, changes in amplitude level do not reflect significant improvement compared to changes in frequency. However, decreasing the number of feedback levels increases the accuracy of feedback perception and subject-specific variations are high for particular participants, showing that a fine-tuning of the parameters is necessary in a real-time application to upper limb prosthetics. In future works, the effects of training, location, and number of actuators will be assessed. This optimized selection will be tested in a real-time proportional myocontrol of a prosthetic hand.



Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4237
Author(s):  
Hoon Ko ◽  
Kwangcheol Rim ◽  
Isabel Praça

The biggest problem with conventional anomaly signal detection using features was that it was difficult to use it in real time and it requires processing of network signals. Furthermore, analyzing network signals in real-time required vast amounts of processing for each signal, as each protocol contained various pieces of information. This paper suggests anomaly detection by analyzing the relationship among each feature to the anomaly detection model. The model analyzes the anomaly of network signals based on anomaly feature detection. The selected feature for anomaly detection does not require constant network signal updates and real-time processing of these signals. When the selected features are found in the received signal, the signal is registered as a potential anomaly signal and is then steadily monitored until it is determined as either an anomaly or normal signal. In terms of the results, it determined the anomaly with 99.7% (0.997) accuracy in f(4)(S0) and in case f(4)(REJ) received 11,233 signals with a normal or 171anomaly judgment accuracy of 98.7% (0.987).



2021 ◽  
Vol 11 (11) ◽  
pp. 5067
Author(s):  
Paulo Veloso Gomes ◽  
António Marques ◽  
João Donga ◽  
Catarina Sá ◽  
António Correia ◽  
...  

The interactivity of an immersive environment comes up from the relationship that is established between the user and the system. This relationship results in a set of data exchanges between human and technological actors. The real-time biofeedback devices allow to collect in real time the biodata generated by the user during the exhibition. The analysis, processing and conversion of these biodata into multimodal data allows to relate the stimuli with the emotions they trigger. This work describes an adaptive model for biofeedback data flows management used in the design of interactive immersive systems. The use of an affective algorithm allows to identify the types of emotions felt by the user and the respective intensities. The mapping between stimuli and emotions creates a set of biodata that can be used as elements of interaction that will readjust the stimuli generated by the system. The real-time interaction generated by the evolution of the user’s emotional state and the stimuli generated by the system allows him to adapt attitudes and behaviors to the situations he faces.



Sign in / Sign up

Export Citation Format

Share Document