scholarly journals Defining Inflammatory Cell States in Rheumatoid Arthritis Joint Synovial Tissues by Integrating Single-cell Transcriptomics and Mass Cytometry

2018 ◽  
Author(s):  
Fan Zhang ◽  
Kevin Wei ◽  
Kamil Slowikowski ◽  
Chamith Y. Fonseka ◽  
Deepak A. Rao ◽  
...  

AbstractTo define the cell populations in rheumatoid arthritis (RA) driving joint inflammation, we applied single-cell RNA-seq (scRNA-seq), mass cytometry, bulk RNA-seq, and flow cytometry to sorted T cells, B cells, monocytes, and fibroblasts from 51 synovial tissue RA and osteoarthritis (OA) patient samples. Utilizing an integrated computational strategy based on canonical correlation analysis to 5,452 scRNA-seq profiles, we identified 18 unique cell populations. Combining mass cytometry and transcriptomics together revealed cell states expanded in RA synovia: THY1+HLAhigh sublining fibroblasts (OR=33.8), IL1B+ pro-inflammatory monocytes (OR=7.8), CD11c+T-bet+ autoimmune-associated B cells (OR=5.7), and PD-1+Tph/Tfh (OR=3.0). We also defined CD8+ T cell subsets characterized by GZMK+, GZMB+, and GNLY+ expression. Using bulk and single-cell data, we mapped inflammatory mediators to source cell populations, for example attributing IL6 production to THY1+HLAhigh fibroblasts and naïve B cells, and IL1B to pro-inflammatory monocytes. These populations are potentially key mediators of RA pathogenesis.

2021 ◽  
Vol 12 ◽  
Author(s):  
Lixing Huang ◽  
Ying Qiao ◽  
Wei Xu ◽  
Linfeng Gong ◽  
Rongchao He ◽  
...  

Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/MΦ) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/MΦ including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3908-3908
Author(s):  
Manabu Kusakabe ◽  
Xuehai Wang ◽  
Guillermo Simkin ◽  
Justin Meskas ◽  
Chaoran Zhang ◽  
...  

Abstract Background: Recent work in both hematologic malignancies and solid tumors has supported the notion that human cancers exhibit marked intra-tumoral heterogeneity (ITH). Results from next generation sequencing (NGS) studies support that subclonal DNA mutations underlie genotypic ITH within a single tumor since the majority of sequence variants are present in only 5-50% of reads for a given tumor sample, and single cell analyses have shown that individual tumor subclones may be ancestrally related in a complex branching hierarchy, suggesting that therapy failures and progressive disease likely arise by Darwinian selection for more aggressive or therapy resistant clones. It has become increasingly clear that it will be important to understand the multi-clonal structure of tumors in order to treat them more effectively. In this study, we sought to use time-of-flight mass cytometry (CyTOF) to explore clonal phenotypic substructure in diffuse large B-cell lymphoma (DLBCL), a diagnostic entity notorious for clinical heterogeneity. Methods: We examined viably frozen single cell suspensions from diagnostic lymph node biopsy samples received for flow cytometric analysis at the BC Cancer Agency. We have thus far acquired CyTOF data from 25 cases of DLBCL using a two-tube, 40-parameter panel encompassing a total of 58 different markers including both surface and intracellular antigens that were selected to reveal heterogeneity within the malignant B-cell population. For each sample acquisition, we included "spiked-in" control cells from pooled reactive (non-malignant) lymph node samples to control for staining variation between antibody/reagent lots and also run-to-run CyTOF instrument drift, facilitated by a CD45 antibody "barcoding" approach. We analyzed the data using a combination of viSNE, Isomap, and PhenoGraph analysis packages. Results: Analysis of individual tumor samples readily distinguished between malignant and residual normal B-cell populations, and also revealed distinct subpopulations among malignant cells of varying degrees of relatedness to one another. These subpopulations were then sorted from one another by conventional FACS from parallel vials of cryopreserved cells using lower dimensional sorting strategies derived from the 40-parameter CyTOF data. Sorted subpopulations will be analyzed by targeted amplicon sequencing for single nucleotide variants identified from whole exome sequencing data obtained from unsorted material to explore the hypothesis that these may represent genotypic subclones. 
Analysis of multiple tumor samples at once yielded several observations. First, B-cells from reactive lymph nodes and non-malignant B-cells within patient lymphoma specimens reproducibly cluster atop one another, indicating highly similar if not identical phenotypic profiles. Second, the majority of patient DLBCL tumors form cohesive individual clusters, separate and distinct from one another, suggesting that the 40-dimensional panel defines cell populations with sufficient resolution such that each patient's tumor can be uniquely identified. Third, individual DLBCL tumors do not aggregate in tight proximity with one another to the extent that we observe among patient follicular lymphoma (FL) samples, suggesting DLBCL represents a broader diversity of phenotypic classes. Fourth, there is local, but loose aggregation of ABC versus GCB subtypes, but there are also clear outliers and areas of intermingling between ABC and GCB tumors, as defined by immunohistochemistry. Finally, a subset of DLBCL tumors exhibit minor subpopulations that map apart from their corresponding "parent" tumor populations, but yet overlap one another, raising the possibility of divergent evolution away from (or alternatively convergent evolution towards) a common tumor archetype. Conclusions: 
Taken together, these observations support that novel information can be derived from CyTOF data with important implications for our understanding of both intra- and inter-tumoral heterogeneity in DLBCL. Disclosures Scott: Celgene: Consultancy, Honoraria; NanoString: Patents & Royalties: Inventor on a patent that NanoString has licensed.


2017 ◽  
Author(s):  
Florian Wagner ◽  
Yun Yan ◽  
Itai Yanai

High-throughput single-cell RNA-Seq (scRNA-Seq) is a powerful approach for studying heterogeneous tissues and dynamic cellular processes. However, compared to bulk RNA-Seq, single-cell expression profiles are extremely noisy, as they only capture a fraction of the transcripts present in the cell. Here, we propose the k-nearest neighbor smoothing (kNN-smoothing) algorithm, designed to reduce noise by aggregating information from similar cells (neighbors) in a computationally efficient and statistically tractable manner. The algorithm is based on the observation that across protocols, the technical noise exhibited by UMI-filtered scRNA-Seq data closely follows Poisson statistics. Smoothing is performed by first identifying the nearest neighbors of each cell in a step-wise fashion, based on partially smoothed and variance-stabilized expression profiles, and then aggregating their transcript counts. We show that kNN-smoothing greatly improves the detection of clusters of cells and co-expressed genes, and clearly outperforms other smoothing methods on simulated data. To accurately perform smoothing for datasets containing highly similar cell populations, we propose the kNN-smoothing 2 algorithm, in which neighbors are determined after projecting the partially smoothed data onto the first few principal components. We show that unlike its predecessor, kNN-smoothing 2 can accurately distinguish between cells from different T cell subsets, and enables their identification in peripheral blood using unsupervised methods. Our work facilitates the analysis of scRNA-Seq data across a broad range of applications, including the identification of cell populations in heterogeneous tissues and the characterization of dynamic processes such as cellular differentiation. Reference implementations of our algorithms can be found at https://github.com/yanailab/knn-smoothing.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3126
Author(s):  
Dominik Saul ◽  
Robyn Laura Kosinsky

The human aging process is associated with molecular changes and cellular degeneration, resulting in a significant increase in cancer incidence with age. Despite their potential correlation, the relationship between cancer- and ageing-related transcriptional changes is largely unknown. In this study, we aimed to analyze aging-associated transcriptional patterns in publicly available bulk mRNA-seq and single-cell RNA-seq (scRNA-seq) datasets for chronic myelogenous leukemia (CML), colorectal cancer (CRC), hepatocellular carcinoma (HCC), lung cancer (LC), and pancreatic ductal adenocarcinoma (PDAC). Indeed, we detected that various aging/senescence-induced genes (ASIGs) were upregulated in malignant diseases compared to healthy control samples. To elucidate the importance of ASIGs during cell development, pseudotime analyses were performed, which revealed a late enrichment of distinct cancer-specific ASIG signatures. Notably, we were able to demonstrate that all cancer entities analyzed in this study comprised cell populations expressing ASIGs. While only minor correlations were detected between ASIGs and transcriptome-wide changes in PDAC, a high proportion of ASIGs was induced in CML, CRC, HCC, and LC samples. These unique cellular subpopulations could serve as a basis for future studies on the role of aging and senescence in human malignancies.


2021 ◽  
Author(s):  
Yakir A Reshef ◽  
Laurie Rumker ◽  
Joyce B Kang ◽  
Aparna Nathan ◽  
Megan B Murray ◽  
...  

As single-cell datasets grow in sample size, there is a critical need to characterize cell states that vary across samples and associate with sample attributes like clinical phenotypes. Current statistical approaches typically map cells to cell-type clusters and examine sample differences through that lens alone. Here we present covarying neighborhood analysis (CNA), an unbiased method to identify cell populations of interest with greater flexibility and granularity. CNA characterizes dominant axes of variation across samples by identifying groups of very small regions in transcriptional space, termed neighborhoods, that covary in abundance across samples, suggesting shared function or regulation. CNA can then rigorously test for associations between any sample-level attribute and the abundances of these covarying neighborhood groups. We show in simulation that CNA enables more powerful and accurate identification of disease-associated cell states than a cluster-based approach. When applied to published datasets, CNA captures a Notch activation signature in rheumatoid arthritis, redefines monocyte populations expanded in sepsis, and identifies a previously undiscovered T-cell population associated with progression to active tuberculosis.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 42-43
Author(s):  
Prajish Iyer ◽  
Lu Yang ◽  
Zhi-Zhang Yang ◽  
Charla R. Secreto ◽  
Sutapa Sinha ◽  
...  

Despite recent developments in the therapy of chronic lymphocytic leukemia (CLL), Richter's transformation (RT), an aggressive lymphoma, remains a clinical challenge. Immune checkpoint inhibitor (ICI) therapy has shown promise in selective lymphoma types, however, only 30-40% RT patients respond to anti-PD1 pembrolizumab; while the underlying CLL failed to respond and 10% CLL patients progress rapidly within 2 months of treatment. Studies indicate pre-existing T cells in tumor biopsies are associated with a greater anti-PD1 response, hence we hypothesized that pre-existing T cell subset characteristics and regulation in anti-PD1 responders differed from those who progressed in CLL. We used mass cytometry (CyTOF) to analyze T cell subsets isolated from peripheral blood mononuclear cells (PBMCs) from 19 patients with who received pembrolizumab as a single agent. PBMCs were obtained baseline(pre-therapy) and within 3 months of therapy initiation. Among this cohort, 3 patients had complete or partial response (responders), 2 patients had rapid disease progression (progressors) (Fig. A), and 14 had stable disease (non-responders) within the first 3 months of therapy. CyTOF analysis revealed that Treg subsets in responders as compared with progressors or non-responders (MFI -55 vs.30, p=0.001) at both baseline and post-therapy were increased (Fig. B). This quantitative analysis indicated an existing difference in Tregs and distinct molecular dynamic changes in response to pembrolizumab between responders and progressors. To delineate the T cell characteristics in progressors and responders, we performed single-cell RNA-seq (SC-RNA-seq; 10X Genomics platform) using T (CD3+) cells enriched from PBMCs derived from three patients (1 responder: RS2; 2 progressors: CLL14, CLL17) before and after treatment. A total of ~10000 cells were captured and an average of 1215 genes was detected per cell. Using a clustering approach (Seurat V3.1.5), we identified 7 T cell clusters based on transcriptional signature (Fig.C). Responders had a larger fraction of Tregs (Cluster 5) as compared with progressors (p=0.03, Fig. D), and these Tregs showed an IFN-related gene signature (Fig. E). To determine any changes in the cellular circuitry in Tregs between responders and progressors, we used FOXP3, CD25, and CD127 as markers for Tregs in our SC-RNA-seq data. We saw a greater expression of FOXP3, CD25, CD127, in RS2 in comparison to CLL17 and CLL14. Gene set enrichment analysis (GSEA) revealed the upregulation of genes involved in lymphocyte activation and FOXP3-regulated Treg development-related pathways in the responder's Tregs (Fig.F). Together, the greater expression of genes involved in Treg activation may reduce the suppressive functions of Tregs, which led to the response to anti-PD1 treatment seen in RS2 consistent with Tregs in melanoma. To delineate any state changes in T cells between progressors and responder, we performed trajectory analysis using Monocle (R package tool) and identified enrichment of MYC/TNF/IFNG gene signature in state 1 and an effector T signature in state 3 For RS2 after treatment (p=0.003), indicating pembrolizumab induced proliferative and functional T cell signatures in the responder only. Further, our single-cell results were supported by the T cell receptor (TCR beta) repertoire analysis (Adaptive Biotechnology). As an inverse measure of TCR diversity, productive TCR clonality in CLL14 and CLL17 samples was 0.638 and 0.408 at baseline, respectively. Fifty percent of all peripheral blood T cells were represented by one large TCR clone in CLL14(progressor) suggesting tumor related T-cell clone expansion. In contrast, RS2(responder) contained a profile of diverse T cell clones with a clonality of 0.027 (Fig. H). Pembrolizumab therapy did not change the clonality of the three patients during the treatment course (data not shown). In summary, we identified enriched Treg signatures delineating responders from progressors on pembrolizumab treatment, paradoxical to the current understanding of T cell subsets in solid tumors. However, these data are consistent with the recent observation that the presence of Tregs suggests a better prognosis in Hodgkin lymphoma, Follicular lymphoma, and other hematological malignancies. Figure 1 Disclosures Kay: Pharmacyclics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Oncotracker: Membership on an entity's Board of Directors or advisory committees; Rigel: Membership on an entity's Board of Directors or advisory committees; Juno Theraputics: Membership on an entity's Board of Directors or advisory committees; Agios Pharma: Membership on an entity's Board of Directors or advisory committees; Cytomx: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees; Morpho-sys: Membership on an entity's Board of Directors or advisory committees; Tolero Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Meyer Squib: Membership on an entity's Board of Directors or advisory committees, Research Funding; Acerta Pharma: Research Funding; Sunesis: Research Funding; Dava Oncology: Membership on an entity's Board of Directors or advisory committees; Abbvie: Research Funding; MEI Pharma: Research Funding. Ansell:AI Therapeutics: Research Funding; Takeda: Research Funding; Trillium: Research Funding; Affimed: Research Funding; Bristol Myers Squibb: Research Funding; Regeneron: Research Funding; Seattle Genetics: Research Funding; ADC Therapeutics: Research Funding. Ding:Astra Zeneca: Research Funding; Abbvie: Research Funding; Octapharma: Membership on an entity's Board of Directors or advisory committees; MEI Pharma: Membership on an entity's Board of Directors or advisory committees; alexion: Membership on an entity's Board of Directors or advisory committees; Beigene: Membership on an entity's Board of Directors or advisory committees; DTRM: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees, Research Funding. OffLabel Disclosure: pembrolizumab


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
William Stephenson ◽  
Laura T. Donlin ◽  
Andrew Butler ◽  
Cristina Rozo ◽  
Bernadette Bracken ◽  
...  

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Rebekka Wegmann ◽  
Marilisa Neri ◽  
Sven Schuierer ◽  
Bilada Bilican ◽  
Huyen Hartkopf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document