scholarly journals Regulation of T cell expansion by antigen presentation dynamics

2018 ◽  
Author(s):  
Andreas Mayer ◽  
Yaojun Zhang ◽  
Alan S. Perelson ◽  
Ned S. Wingreen

An essential feature of the adaptive immune system is the proliferation of antigen-specific lymphocytes during an immune reaction to form a large pool of effector cells. This proliferation must be regulated to ensure an effective response to infection while avoiding immunopathology. Recent experiments in mice have demonstrated that the expansion of a specific clone of T cells in response to cognate antigen obeys a striking inverse power law with respect to the initial number of T cells. Here, we show that such a relationship arises naturally from a model in which T cell expansion is limited by decaying levels of presented antigen. The same model also accounts for the observed dependence of T cell expansion on affinity for antigen and on the kinetics of antigen administration. Extending the model to address expansion of multiple T cell clones competing for antigen, we find that higher affinity clones can suppress the proliferation of lower affinity clones, thereby promoting the specificity of the response. Employing the model to derive optimal vaccination protocols, we find that exponentially increasing antigen doses can achieve a nearly optimized response. We thus conclude that the dynamics of presented antigen is a key regulator of both the size and specificity of the adaptive immune response.

2019 ◽  
Vol 116 (13) ◽  
pp. 5914-5919 ◽  
Author(s):  
Andreas Mayer ◽  
Yaojun Zhang ◽  
Alan S. Perelson ◽  
Ned S. Wingreen

An essential feature of the adaptive immune system is the proliferation of antigen-specific lymphocytes during an immune reaction to form a large pool of effector cells. This proliferation must be regulated to ensure an effective response to infection while avoiding immunopathology. Recent experiments in mice have demonstrated that the expansion of a specific clone of T cells in response to cognate antigen obeys a striking inverse power law with respect to the initial number of T cells. Here, we show that such a relationship arises naturally from a model in which T cell expansion is limited by decaying levels of presented antigen. The same model also accounts for the observed dependence of T cell expansion on affinity for antigen and on the kinetics of antigen administration. Extending the model to address expansion of multiple T cell clones competing for antigen, we find that higher-affinity clones can suppress the proliferation of lower-affinity clones, thereby promoting the specificity of the response. Using the model to derive optimal vaccination protocols, we find that exponentially increasing antigen doses can achieve a nearly optimized response. We thus conclude that the dynamics of presented antigen is a key regulator of both the size and specificity of the adaptive immune response.


Author(s):  
Pieter Meysman ◽  
Anna Postovskaya ◽  
Nicolas De Neuter ◽  
Benson Ogunjimi ◽  
Kris Laukens

Much is still not understood about the human adaptive immune response to SARS-CoV-2, the causative agent of COVID-19. In this paper, we demonstrate the use of machine learning to classify SARS-CoV-2 epitope specific T-cell clonotypes in T-cell receptor (TCR) sequencing data. We apply these models to public TCR data and show how they can be used to study T-cell longitudinal profiles in COVID-19 patients to characterize how the adaptive immune system reacts to the SARS-CoV-2 virus. Our findings confirm prior knowledge that SARS-CoV-2 reactive T-cell diversity increases over the course of disease progression. However our results show a difference between those T cells that react to epitope unique to SARS-CoV-2, which show a more prominent increase, and those T cells that react to epitopes common to other coronaviruses, which begin at a higher baseline.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 192-192
Author(s):  
Chunyan Zhang ◽  
Jingwei Lou ◽  
Naninong Li ◽  
Ivan Todorov ◽  
Chia-Lei Lin ◽  
...  

Abstract Donor CD8+ T cells play a critical role in mediating graft versus leukemia (GVL), but also induce graft versus host disease (GVHD) in recipients conditioned with total body irradiation (TBI). Here, we report that injections of donor C57BL/6 (H-2b) or FVB/N (H-2q) CD8+ T with bone marrow cells induced chimerism and eliminated BCL1 leukemia/lymphoma cells without GVHD in anti-CD3-conditioned BALB/c (H-2d) recipients. In contrast, the same dose of donor CD8+ T and marrow cells induced lethal GVHD in TBI-conditioned recipients. In addition, the anti-CD3-conditioned long-term complete chimeras without prior exposure to host-type BCL1 cells also eliminated the tumors when being challenged with BCL1 cells 120 days after HCT. This is in contrast to the report that long-term complete chimeras induced with delayed donor lymphocyte infusion lost GVL activity. Using in vivo and ex vivo bioluminescent imaging, we observed that donor CD8+ T cells expanded rapidly and infiltrated GVHD target tissues in TBI-conditioned recipients, but donor CD8+ T cell expansion in anti-CD3-conditioned recipients was confined to lympho-hematological tissues. This confinement was associated with lack of up-regulated expression of α4β7 integrin and chemokine receptors (i.e. CXCR3) on donor CD8+ T cells. In addition, host-reactive donor CD8+ T cells in anti-CD3-conditioned recipients were only partially deleted, and the residual cells were rendered heterogeneous: some unresponsive/anergic, some Tc2, some Foxp3+ suppressive cells, and some effector cells. The whole population of residual donor CD8+ T cells from anti-CD3-conditioned recipients mediated GVL without GVHD in TBI-conditioned secondary recipients. These results indicate that anti-CD3-conditioning separates GVL from GVHD via confining donor CD8+ T cell expansion to host lympho-hematological tissues as well as tolerization of the residual donor CD8+ T cells, in which the residual host-reactive effector cells mediate persistent GVL, and the regulatory CD8+ T cells prevent them from damaging host tissues.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A812-A812
Author(s):  
Pia Aehnlich ◽  
Per Thor Straten ◽  
Ana Micaela Carnaz Simoes ◽  
Signe Skadborg ◽  
Gitte Olofsson

BackgroundAdoptive cell therapy (ACT) is an approved treatment option for certain hematological cancers and has also shown success for some solid cancers. Still, benefit and eligibility do not extend to all patients. ACT with Vγ9Vδ2 T cells is a promising approach to overcome this hurdle.MethodsIn this study, we explored the effect of different cytokine conditions on the expansion of Vγ9Vδ2 T cells in vitro.ResultsWe could show that Vγ9Vδ2 T cell expansion is feasible with two different cytokine conditions: (a) 1000U/ml interleukin (IL)-2 and (b) 100U/ml IL-2+100U/ml IL-15. We did not observe differences in expansion rate or Vγ9Vδ2 T cell purity between the conditions; however, IL-2/IL-15-expanded Vγ9Vδ2 T cells displayed enhanced cytotoxicity against tumor cells, also in hypoxia. While this increase in killing capacity was not reflected in phenotype, we demonstrated that IL-2/IL-15-expanded Vγ9Vδ2 T cells harbor increased amounts of perforin, granzyme B and granulysin in a resting state and release more upon activation. IL-2/IL-15-expanded Vγ9Vδ2 T cells also showed higher levels of transcription factor T-bet, which could indicate that T-bet and cytotoxic molecule levels confer the increased cytotoxicity.ConclusionsThese results advocate the inclusion of IL-15 into ex vivo Vγ9Vδ2 T cell expansion protocols in future clinical studies.


2021 ◽  
pp. annrheumdis-2021-220435
Author(s):  
Theresa Graalmann ◽  
Katharina Borst ◽  
Himanshu Manchanda ◽  
Lea Vaas ◽  
Matthias Bruhn ◽  
...  

ObjectivesThe monoclonal anti-CD20 antibody rituximab is frequently applied in the treatment of lymphoma as well as autoimmune diseases and confers efficient depletion of recirculating B cells. Correspondingly, B cell-depleted patients barely mount de novo antibody responses during infections or vaccinations. Therefore, efficient immune responses of B cell-depleted patients largely depend on protective T cell responses.MethodsCD8+ T cell expansion was studied in rituximab-treated rheumatoid arthritis (RA) patients and B cell-deficient mice on vaccination/infection with different vaccines/pathogens.ResultsRituximab-treated RA patients vaccinated with Influvac showed reduced expansion of influenza-specific CD8+ T cells when compared with healthy controls. Moreover, B cell-deficient JHT mice infected with mouse-adapted Influenza or modified vaccinia virus Ankara showed less vigorous expansion of virus-specific CD8+ T cells than wild type mice. Of note, JHT mice do not have an intrinsic impairment of CD8+ T cell expansion, since infection with vaccinia virus induced similar T cell expansion in JHT and wild type mice. Direct type I interferon receptor signalling of B cells was necessary to induce several chemokines in B cells and to support T cell help by enhancing the expression of MHC-I.ConclusionsDepending on the stimulus, B cells can modulate CD8+ T cell responses. Thus, B cell depletion causes a deficiency of de novo antibody responses and affects the efficacy of cellular response including cytotoxic T cells. The choice of the appropriate vaccine to vaccinate B cell-depleted patients has to be re-evaluated in order to efficiently induce protective CD8+ T cell responses.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sasan Ghaffari ◽  
Monireh Torabi-Rahvar ◽  
Sajjad Aghayan ◽  
Zahra Jabbarpour ◽  
Kobra Moradzadeh ◽  
...  

Abstract Background The successful ex vivo expansion of T-cells in great numbers is the cornerstone of adoptive cell therapy. We aimed to achieve the most optimal T-cell expansion condition by comparing the expansion of T-cells at various seeding densities, IL-2 concentrations, and bead-to-cell ratios. we first expanded the peripheral blood mononuclear cells (PBMCs) of a healthy donor at a range of 20 to 500 IU/mL IL-2 concentrations, 125 × 103 to 1.5 × 106 cell/mL, and 1:10 to 10:1 B:C (Bead-to-cell) ratios and compared the results. We then expanded the PBMC of three healthy donors using the optimized conditions and examined the growth kinetics. On day 28, CD3, CD4, and CD8 expression of the cell populations were analyzed by flow cytometry. Results T-cells of the first donor showed greater expansion results in IL-2 concentrations higher than 50 IU/mL compared to 20 IU/mL (P = 0.02). A seeding density of 250 × 103 cell/mL was superior to higher or lower densities in expanding T-cells (P = 0.025). Also, we witnessed a direct correlation between the B:C ratio and T-cell expansion, in which, in 5:1 and 10:1 B:C ratios T-cell significantly expanded more than lower B:C ratios. The results of PBMC expansions of three healthy donors were similar in growth kinetics. In the optimized condition, 96–98% of the lymphocyte population expressed CD3. While the majority of these cells expressed CD8, the mean expression of CD4 in the donors was 19.3, 16.5, and 20.4%. Conclusions Our methodology demonstrates an optimized culture condition for the production of large quantities of polyclonal T-cells, which could be useful for future clinical and research studies.


2021 ◽  
Vol 6 (59) ◽  
pp. eabh1516
Author(s):  
Marion Moreews ◽  
Kenz Le Gouge ◽  
Samira Khaldi-Plassart ◽  
Rémi Pescarmona ◽  
Anne-Laure Mathieu ◽  
...  

Multiple Inflammatory Syndrome in Children (MIS-C) is a delayed and severe complication of SARS-CoV-2 infection that strikes previously healthy children. As MIS-C combines clinical features of Kawasaki disease and Toxic Shock Syndrome (TSS), we aimed to compare the immunological profile of pediatric patients with these different conditions. We analyzed blood cytokine expression, and the T cell repertoire and phenotype in 36 MIS-C cases, which were compared to 16 KD, 58 TSS, and 42 COVID-19 cases. We observed an increase of serum inflammatory cytokines (IL-6, IL-10, IL-18, TNF-α, IFNγ, CD25s, MCP1, IL-1RA) in MIS-C, TSS and KD, contrasting with low expression of HLA-DR in monocytes. We detected a specific expansion of activated T cells expressing the Vβ21.3 T cell receptor β chain variable region in both CD4 and CD8 subsets in 75% of MIS-C patients and not in any patient with TSS, KD, or acute COVID-19; this correlated with the cytokine storm detected. The T cell repertoire returned to baseline within weeks after MIS-C resolution. Vβ21.3+ T cells from MIS-C patients expressed high levels of HLA-DR, CD38 and CX3CR1 but had weak responses to SARS-CoV-2 peptides in vitro. Consistently, the T cell expansion was not associated with specific classical HLA alleles. Thus, our data suggested that MIS-C is characterized by a polyclonal Vβ21.3 T cell expansion not directed against SARS-CoV-2 antigenic peptides, which is not seen in KD, TSS and acute COVID-19.


Blood ◽  
2008 ◽  
Vol 111 (5) ◽  
pp. 2497-2498
Author(s):  
Susumu Nakae ◽  
Keisuke Oboki ◽  
Hirohisa Saito

IgE/antigen-FcϵRI crosslinking promotes antigen internalization and apoptosis in mouse mast cells. Dendritic cells uptake the apoptotic mast cells carrying internalized antigens, and thus can efficiently present the antigens to memory T cells.


2004 ◽  
Vol 231 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Kenneth Flanagan ◽  
Dorota Moroziewicz ◽  
Heesun Kwak ◽  
Heidi Hörig ◽  
Howard L. Kaufman

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sofya A Kasatskaya ◽  
Kristin Ladell ◽  
Evgeniy S Egorov ◽  
Kelly L Miners ◽  
Alexey N Davydov ◽  
...  

The organizational integrity of the adaptive immune system is determined by functionally discrete subsets of CD4+ T cells, but it has remained unclear to what extent lineage choice is influenced by clonotypically expressed T-cell receptors (TCRs). To address this issue, we used a high-throughput approach to profile the αβ TCR repertoires of human naive and effector/memory CD4+ T-cell subsets, irrespective of antigen specificity. Highly conserved physicochemical and recombinatorial features were encoded on a subset-specific basis in the effector/memory compartment. Clonal tracking further identified forbidden and permitted transition pathways, mapping effector/memory subsets related by interconversion or ontogeny. Public sequences were largely confined to particular effector/memory subsets, including regulatory T cells (Tregs), which also displayed hardwired repertoire features in the naive compartment. Accordingly, these cumulative repertoire portraits establish a link between clonotype fate decisions in the complex world of CD4+ T cells and the intrinsic properties of somatically rearranged TCRs.


Sign in / Sign up

Export Citation Format

Share Document