scholarly journals Epigenome and transcriptome landscapes highlight dual roles of proinflammatory players in a perinatal model of white matter injury

2018 ◽  
Author(s):  
Anne-Laure Schang ◽  
Juliette van Steenwinckel ◽  
Julia Lipecki ◽  
Charlotte Rich-Griffin ◽  
Kate Woolley-Allen ◽  
...  

AbstractPremature birth is the commonest cause of death and disability in young children. Diffuse white matter injury (DWMI), provoked by inflammatory insults accompanying prematurity, is associated with increased risk of neurodevelopmental disorders – such as autism spectrum disorders – and is due to maturation arrest in oligodendrocyte precursors (OPCs). The lack of therapeutic solutions is a strong impetus to unveil the molecular mechanisms underlying neuroinflammation impact on OPC cell fate. We used a validated mouse model of DWMI, induced by systemic- and neuro-inflammation – as observed in preterm infants – and based on interleukin-1B administration from postnatal day P1 to P5. Using integrated genome-wide approaches we showed that neuroinflammation induced limited epigenomic disturbances in OPCs, but marked transcriptomic alterations of genes of the immune/inflammatory pathways. We found that these genes were expressed in control OPCs and physiologically downregulated between P3-P10, as part of the OPC normal developmental trajectory. We observed that transcription factors of the inflammatory pathways occupied DNA both in unstressed and inflamed OPCs. Thus, rather than altering genome-wide chromatin accessibility, neuroinflammation takes advantage of open chromatin regions and deeply counteracts the stage-dependent downregulation of these active transcriptional programs by the sustained upregulation of transcript levels. The intricate dual roles – stress-responsive and potentially developmental – of these proinflammatory mediators strongly suggest that the mere suppression of these inflammatory mediators, as currently proposed, may not be a valid neurotherapeutic strategy. Our study provides new insights for the future development of more targeted approaches to protect the preterm brain.Significance statementNeuroinflammation provokes premature birth, the commonest cause of death and disability in children, including autism. Neuroinflammation-induced neurological damage encompasses white matter injury. The actual therapeutic strategies are orientated towards global repression of proinflammatory actors. We explore the epigenomic and transcriptomic impacts of neuroinflammation on a purified cell population of oligodendrocyte precursors cells (OPCs). Rather than altering genome-wide chromatin accessibility, neuroinflammation takes advantage of open chromatin regions and deeply counteracts the stage-dependent downregulation of these active transcriptional programs, in particular that of the inflammatory pathway. These proinflammatory genes are constitutively expressed by OPCs and their physiological downregulation during OPC maturation process is counteracted by neuroinflammation. The intricacy between the OPC physiological and neuroinflammation-responsive expression of these proinflammatory mediators reorientates neuroprotective strategies.

2020 ◽  
Vol 16 (11) ◽  
pp. e1008422
Author(s):  
Azusa Tanaka ◽  
Yasuhiro Ishitsuka ◽  
Hiroki Ohta ◽  
Akihiro Fujimoto ◽  
Jun-ichirou Yasunaga ◽  
...  

The huge amount of data acquired by high-throughput sequencing requires data reduction for effective analysis. Here we give a clustering algorithm for genome-wide open chromatin data using a new data reduction method. This method regards the genome as a string of 1s and 0s based on a set of peaks and calculates the Hamming distances between the strings. This algorithm with the systematically optimized set of peaks enables us to quantitatively evaluate differences between samples of hematopoietic cells and classify cell types, potentially leading to a better understanding of leukemia pathogenesis.


2018 ◽  
Author(s):  
Ignacio J. Tripodi ◽  
Mary A. Allen ◽  
Robin D. Dowell

AbstractTranscription factors are managers of the cellular factory, and key components to many diseases. Many non-coding single nucleotide polymorphisms affect transcription factors, either by directly altering the protein or its functional activity at individual binding sites. Here we first briefly summarize high throughput approaches to studying transcription factor activity. We then demonstrate, using published chromatin accessibility data (specifically ATAC-seq), that the genome wide profile of TF recognition motifs relative to regions of open chromatin can determine the key transcription factor altered by a perturbation. Our method of determining which TF are altered by a perturbation is simple, quick to implement and can be used when biological samples are limited. In the future, we envision this method could be applied to determining which TFs show altered activity in response to a wide variety of drugs and diseases.


Author(s):  
Juli Liu ◽  
Sheng Liu ◽  
Hongyu Gao ◽  
Lei Han ◽  
Xiaona Chu ◽  
...  

AbstractBackgroundEarly human heart and brain development simultaneously occur during embryogenesis. Notably, in human newborns, congenital heart defects strongly associate with neurodevelopmental abnormalities, suggesting a common gene/complex underlying both cardiogenesis and neurogenesis. However, due to lack of in vivo studies, the molecular mechanisms that govern both early human heart and brain development remain elusive.ResultsHere, we report ARID1A, which is a DNA-binding-subunit of the SWI/SNF epigenetic complex, controls both neurogenesis and cardiogenesis from human embryonic stem cells (hESCs) via employing distinct mechanisms. Knockout of ARID1A (ARID1A-/-) led to spontaneous differentiation of neural cells together with globally enhanced expression of neurogenic genes in undifferentiated hESCs. Additionally, when compared with WT hESCs, cardiac differentiation from ARID1A-/- hESCs was prominently suppressed, whereas neural differentiation was significantly promoted. Whole genome-wide scRNA-seq, ATAC-seq, and ChIP-seq analyses revealed that ARID1A was required to open chromatin accessibility on promoters of essential cardiogenic genes, and temporally associated with key cardiogenic transcriptional factors T and MEF2C during early cardiac development. However, during early neural development, transcription of most essential neurogenic genes was dependent on ARID1A, which could interact with a known neural restrictive silencer factor REST/NRSF.ConclusionsWe uncovered the opposite roles by ARID1A to govern both early cardiac and neural development from pluripotent stem cells. Global chromatin accessibility on cardiogenic genes is dependent on ARID1A, whereas transcriptional activity of neurogenic genes is under control by ARID1A, possibly through ARID1A-REST/NRSF interaction.


2019 ◽  
Vol 47 (20) ◽  
pp. 10580-10596 ◽  
Author(s):  
Karl J V Nordström ◽  
Florian Schmidt ◽  
Nina Gasparoni ◽  
Abdulrahman Salhab ◽  
Gilles Gasparoni ◽  
...  

Abstract Chromatin accessibility maps are important for the functional interpretation of the genome. Here, we systematically analysed assay specific differences between DNase I-seq, ATAC-seq and NOMe-seq in a side by side experimental and bioinformatic setup. We observe that most prominent nucleosome depleted regions (NDRs, e.g. in promoters) are roboustly called by all three or at least two assays. However, we also find a high proportion of assay specific NDRs that are often ‘called’ by only one of the assays. We show evidence that these assay specific NDRs are indeed genuine open chromatin sites and contribute important information for accurate gene expression prediction. While technically ATAC-seq and DNase I-seq provide a superb high NDR calling rate for relatively low sequencing costs in comparison to NOMe-seq, NOMe-seq singles out for its genome-wide coverage allowing to not only detect NDRs but also endogenous DNA methylation and as we show here genome wide segmentation into heterochromatic B domains and local phasing of nucleosomes outside of NDRs. In summary, our comparisons strongly suggest to consider assay specific differences for the experimental design and for generalized and comparative functional interpretations.


2017 ◽  
Author(s):  
Jenna E. Haines ◽  
Michael B. Eisen

AbstractAs the Drosophila embryo transitions from the use of maternal RNAs to zygotic transcription, domains of open chromatin, with relatively low nucleosome density and specific histone marks, are established at promoters and enhancers involved in patterned embryonic transcription. However, it remains unclear whether open chromatin is a product of activity - transcription at promoters and patterning transcription factor binding at enhancers - or whether it is established by independent mechanisms. Recent work has implicated the ubiquitously expressed, maternal factor Zelda in this process. To assess the relative contribution of activity in the establishment of chromatin accessibility, we have probed chromatin accessibility across the anterior-posterior axis of early Drosophila melanogaster embryos by applying a transposon based assay for chromatin accessibility (ATAC-seq) to anterior and posterior halves of hand-dissected, cellular blastoderm embryos. We find that genome-wide chromatin accessibility is remarkably similar between the two halves. Promoters and enhancers that are active in exclusively one half of the embryo have open chromatin in the other half, demonstrating that chromatin accessibility is not a direct result of activity. However, there is a small skew at enhancers that drive transcription exclusively in either the anterior or posterior half of the embryo, with greater accessibility in the region of activity. Taken together these data support a model in which regions of chromatin accessibility are defined and established by ubiquitous factors, and fine-tuned subsequently by activity.


2020 ◽  
Author(s):  
Matthew R. Hass ◽  
Daniel Brisette ◽  
Sreeja Parameswaran ◽  
Mario Pujato ◽  
Omer Donmez ◽  
...  

AbstractRunt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in an embryonic kidney-derived cell (mK4) results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci are enriched for Runx sites, remain bound by Runx2, but lose chromatin accessibility and expression in Runx1 knockout cells. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that genome-scale derepression is an indirect consequence of losing Runx1-dependent Zeb expression.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Maria F Martinez ◽  
Silvia Medrano ◽  
Masafumi Oka ◽  
Ellen S Pentz ◽  
Allan W Dickerman ◽  
...  

Control of the renin cell phenotype is crucial for the regulation of blood pressure and fluid- electrolyte homeostasis. Enhancers are cis -acting DNA sequences that harbor distinct chromatin features and regulate gene expression in an orientation-independent manner. Recently, clusters of enhancers or super-enhancers (SE) highly enriched with master transcription factors, possessing open chromatin configuration and in close proximity to cell-identity genes have been proposed. We tested the hypothesis that renin cells have unique repertoires of enhancers and super-enhancers, distinct from other cell types. Those regulatory clusters may in turn confer the identity of renin cells. To define the genome-wide enhancer landscape characteristic of renin cells, we studied As4.1 cells, kidney tumor cells that express renin constitutively, and native renin cells sorted from the kidneys of Ren1cKO-YFP + mice. In these mice, the renin promoter drives YFP expression thus marking the renin cells. We used genome-wide ChIP-Seq for Med1 (subunit 1 of the Mediator complex), H3K27Ac (active enhancers) and Pol II (to visualize putative genomic areas undergoing transcription). The ROSE algorithm we used to ascertain super-enhancers. Chromatin accessibility genome-wide was assessed using ATAC-Seq. The results were compared to twenty-one other cell types that do not express renin. In As4.1 cells, we identified 14,871 enhancers based on H3K27Ac. Of those, 888 were classified as super-enhancers. The Med1 signal in As4.1 cells showed a SE localized 5kb upstream the Ren1 gene, which was ranked at position 25 among other SEs. The H3K27Ac signal showed highest occupancy in the same region. ChIP-Seq for H3K27Ac in YFP + cells showed 211 SEs of 2,987 peaks. The SE for the renin gene possessed the highest signal and ranked number 1, indicating its importance in renin cells. One hundred and thirteen SEs were unique to renin cells, including the SE associated with the renin gene. ATAC-Seq signals overlapped with the renin SE and the classical enhancer indicating that the chromatin was accessible for transcription. In summary, renin-expressing cells possess distinct repertoires of unique enhancers and super-enhancers that acting in concert are likely to determine the renin phenotype.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Colleen E Hannon ◽  
Shelby A Blythe ◽  
Eric F Wieschaus

In Drosophila, graded expression of the maternal transcription factor Bicoid (Bcd) provides positional information to activate target genes at different positions along the anterior-posterior axis. We have measured the genome-wide binding profile of Bcd using ChIP-seq in embryos expressing single, uniform levels of Bcd protein, and grouped Bcd-bound targets into four classes based on occupancy at different concentrations. By measuring the biochemical affinity of target enhancers in these classes in vitro and genome-wide chromatin accessibility by ATAC-seq, we found that the occupancy of target sequences by Bcd is not primarily determined by Bcd binding sites, but by chromatin context. Bcd drives an open chromatin state at a subset of its targets. Our data support a model where Bcd influences chromatin structure to gain access to concentration-sensitive targets at high concentrations, while concentration-insensitive targets are found in more accessible chromatin and are bound at low concentrations. This may be a common property of developmental transcription factors that must gain early access to their target enhancers while the chromatin state of the genome is being remodeled during large-scale transitions in the gene regulatory landscape.


2017 ◽  
Author(s):  
Colleen E. Hannon ◽  
Shelby A. Blythe ◽  
Eric F. Wieschaus

ABSTRACTIn Drosophila, graded expression of the maternal transcription factor Bicoid (Bcd) provides positional information to activate target genes at different positions along the anterior-posterior axis. We have measured the genome-wide binding profile of Bcd using ChIP-seq in embryos expressing single, uniform levels of Bcd protein, and grouped Bcd-bound targets into four classes based on occupancy at different concentrations. By measuring the biochemical affinity of target enhancers in these classes in vitro and genome-wide chromatin accessibility by ATAC-seq, we found that the occupancy of target sequences by Bcd is not primarily determined by Bcd binding sites, but by chromatin context. Bcd drives an open chromatin state at a subset its targets. Our data support a model where Bcd influences chromatin structure to gain access to concentration-sensitive targets at high concentrations, while concentration-insensitive targets are found in more accessible chromatin and are bound at low concentrations.


Sign in / Sign up

Export Citation Format

Share Document