scholarly journals A fuzzy-registration approach to track cell divisions in time-lapse fluorescence microscopy

2018 ◽  
Author(s):  
Saoirse Amarteifio ◽  
Todd Fallesen ◽  
Gunnar Pruessner ◽  
Giovanni Sena

AbstractBackgroundParticle-tracking in 3D is an indispensable computational tool to extract critical information on dynamical processes from raw time-lapse imaging. This is particularly true with in vivo time-lapse fluorescence imaging in cell and developmental biology, where complex dynamics are observed at high temporal resolution. Common tracking algorithms used with time-lapse data in fluorescence microscopy typically assume a continuous signal where background, recognisable keypoints and independently moving objects of interest are permanently visible. Under these conditions, simple registration and identity management algorithms can track the objects of interest over time. In contrast, here we consider the case of transient signals and objects whose movements are constrained within a tissue, where standard algorithms fail to provide robust tracking.ResultsTo optimize 3D tracking in these conditions, we propose the merging of registration and tracking tasks into a fuzzy registration algorithm to solve the identity management problem. We describe the design and application of such an algorithm, illustrated in the domain of plant biology, and make it available as an open-source software implementation. The algorithm is tested on mitotic events in 4D data-sets obtained with light-sheet fluorescence microscopy on growing Arabidopsis thaliana roots expressing CYCB::GFP. We validate the method by comparing the algorithm performance against both surrogate data and manual tracking.ConclusionThis method fills a gap in existing tracking techniques, following mitotic events in challenging data-sets using transient fluorescent markers in unregistered images.

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Saoirse Amarteifio ◽  
Todd Fallesen ◽  
Gunnar Pruessner ◽  
Giovanni Sena

Abstract Background Particle-tracking in 3D is an indispensable computational tool to extract critical information on dynamical processes from raw time-lapse imaging. This is particularly true with in vivo time-lapse fluorescence imaging in cell and developmental biology, where complex dynamics are observed at high temporal resolution. Common tracking algorithms used with time-lapse data in fluorescence microscopy typically assume a continuous signal where background, recognisable keypoints and independently moving objects of interest are permanently visible. Under these conditions, simple registration and identity management algorithms can track the objects of interest over time. In contrast, here we consider the case of transient signals and objects whose movements are constrained within a tissue, where standard algorithms fail to provide robust tracking. Results To optimize 3D tracking in these conditions, we propose the merging of registration and tracking tasks into a registration algorithm that uses random sampling to solve the identity management problem. We describe the design and application of such an algorithm, illustrated in the domain of plant biology, and make it available as an open-source software implementation. The algorithm is tested on mitotic events in 4D data-sets obtained with light-sheet fluorescence microscopy on growing Arabidopsis thaliana roots expressing CYCB::GFP. We validate the method by comparing the algorithm performance against both surrogate data and manual tracking. Conclusion This method fills a gap in existing tracking techniques, following mitotic events in challenging data-sets using transient fluorescent markers in unregistered images.


2022 ◽  
Author(s):  
Alice C Yuen ◽  
Anadika R Prasad ◽  
Vilaiwan M Fernandes ◽  
Marc Amoyel

Extracellular Signal-Regulated Kinase (ERK) lies downstream of a core signalling cascade that controls all aspects of development and adult homeostasis. Recent developments have led to new tools to image and manipulate the pathway. However, visualising ERK activity in vivo with high temporal resolution remains a challenge in Drosophila. We adapted a kinase translocation reporter (KTR) for use in Drosophila, which shuttles out of the nucleus when phosphorylated by ERK. We show that ERK-KTR faithfully reports endogenous ERK signalling activity in developing and adult tissues, and that it responds to genetic perturbations upstream of ERK. Using ERK-KTR in time-lapse imaging, we made two novel observations: firstly, sustained hyperactivation of ERK by expression of dominant-active Epidermal Growth Factor Receptor raised the overall level but did not alter the kinetics of ERK activity; secondly, heterogeneity in ERK activity in retinal basal glia correlated with the direction of migration of individual cells. Our results show that KTR technology can be applied in Drosophila to monitor ERK activity in real-time and suggest that this modular tool can be further adapted to study other kinases.


1999 ◽  
Vol 112 (24) ◽  
pp. 4521-4534 ◽  
Author(s):  
R. Windoffer ◽  
R.E. Leube

To monitor the desmosome-anchored cytokeratin network in living cells fusion protein HK13-EGFP consisting of human cytokeratin 13 and the enhanced green fluorescent protein was stably expressed in vulvar carcinoma-derived A-431 cells. It is shown for A-431 subclone AK13-1 that HK13-EGFP emits strong fluorescence in fixed and living cells, being part of an extended cytoplasmic intermediate filament network that is indistinguishable from that of parent A-431 cells. Biochemical, immunological and ultrastructural analyses demonstrate that HK13-EGFP behaves identically to the endogenous cytokeratin 13 and is therefore a reliable in vivo tag for this polypeptide and the structures formed by it. Time-lapse fluorescence microscopy reveals that the cytokeratin 13-containing network is in constant motion, resulting in continuous restructuring occurring in single and migratory cells, as well as in desmosome-anchored cells. Two major types of movement are distinguished: (i) oscillations of mostly long filaments, and (ii) an inward-directed flow of fluorescence originating as diffuse material at the cell periphery and moving in the form of dots and thin filaments toward the deeper cytoplasm where it coalesces with other filaments and filament bundles. Both movements are energy dependent and can be inhibited by nocodazole, but not by cytochalasin D. Finally, disassembly and reformation of cytokeratin filament networks are documented in dividing cells revealing distinct and rapidly occurring stages of cytokeratin organisation and distribution.


2022 ◽  
Author(s):  
Nicolas Chenouard ◽  
Vladimir Kouskoff ◽  
Richard W Tsien ◽  
Frédéric Gambino

Fluorescence microscopy of Ca2+ transients in small neurites of the behaving mouse provides an unprecedented view of the micrometer-scale mechanisms supporting neuronal communication and computation, and therefore opens the way to understanding their role in cognition. However, the exploitation of this growing and precious experimental data is impeded by the scarcity of methods dedicated to the analysis of images of neurites activity in vivo. We present NNeurite, a set of mathematical and computational techniques specialized for the analysis of time-lapse microscopy images of neurite activity in small behaving animals. Starting from noisy and unstable microscopy images containing an unknown number of small neurites, NNeurite simultaneously aligns images, denoises signals and extracts the location and the temporal activity of the sources of Ca2+ transients. At the core of NNeurite is a novel artificial neuronal network(NN) which we have specifically designed to solve the non-negative matrix factorization (NMF)problem modeling source separation in fluorescence microscopy images. For the first time, we have embedded non-rigid image alignment in the NMF optimization procedure, hence allowing to stabilize images based on the transient and weak neurite signals. NNeurite processing is free of any human intervention as NN training is unsupervised and the unknown number of Ca2+ sources is automatically obtained by the NN-based computation of a low-dimensional representation of time-lapse images. Importantly, the spatial shapes of the sources of Ca2+ fluorescence are not constrained in NNeurite, which allowed to automatically extract the micrometer-scale details of dendritic and axonal branches, such dendritic spines and synaptic boutons, in the cortex of behaving mice. We provide NNeurite as a free and open-source library to support the efforts of the community in advancing in vivo microscopy of neurite activity.


2021 ◽  
Vol 2022 (1) ◽  
pp. pdb.prot106781
Author(s):  
Hai-yan He ◽  
Chih-Yang Lin ◽  
Hollis T. Cline

In vivo time-lapse imaging of complete dendritic arbor structures in tectal neurons of Xenopus laevis tadpoles has served as a powerful in vivo model to study activity-dependent structural plasticity in the central nervous system during early development. In addition to quantitative analysis of gross arbor structure, dynamic analysis of the four-dimensional data offers particularly valuable insights into the structural changes occurring in subcellular domains over experience/development-driven structural plasticity events. Such analysis allows not only quantifiable characterization of branch additions and retractions with high temporal resolution but also identification of the loci of action. This allows for a better understanding of the spatiotemporal association of structural changes to functional relevance. Here we describe a protocol for in vivo time-lapse imaging of complete dendritic arbors from individual neurons in the brains of anesthetized tadpoles with two-photon microscopy and data analysis of the time series of 3D dendritic arbors. For data analysis, we focus on dynamic analysis of reconstructed neuronal filaments using a customized open source computer program we developed (4D SPA), which allows aligning and matching of 3D neuronal structures across different time points with greatly improved speed and reliability. File converters are provided to convert reconstructed filament files from commercial reconstruction software to be used in 4D SPA. The program and user manual are publicly accessible and operate through a graphical user interface on both Windows and Mac OSX.


2007 ◽  
Vol 179 (5) ◽  
pp. 1059-1066 ◽  
Author(s):  
Christopher S. Campbell ◽  
R. Dyche Mullins

Type II par operons harness polymerization of the dynamically unstable actin-like protein ParM to segregate low-copy plasmids in rod-shaped bacteria. In this study, we use time-lapse fluorescence microscopy to follow plasmid dynamics and ParM assembly in Escherichia coli. Plasmids lacking a par operon undergo confined diffusion with a diffusion constant of 5 × 10−5 μm2/s and a confinement radius of 0.28 μm. Single par-containing plasmids also move diffusively but with a larger diffusion constant (4 × 10−4 μm2/s) and confinement radius (0.42 μm). ParM filaments are dynamically unstable in vivo and form spindles that link pairs of par-containing plasmids and drive them rapidly (3.1 μm/min) toward opposite poles of the cell. After reaching the poles, ParM filaments rapidly and completely depolymerize. After ParM disassembly, segregated plasmids resume diffusive motion, often encountering each other many times and undergoing multiple rounds of ParM-dependent segregation in a single cell cycle. We propose that in addition to driving segregation, the par operon enables plasmids to search space and find sister plasmids more effectively.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joonas A. Jamsen ◽  
Akira Sassa ◽  
Lalith Perera ◽  
David D. Shock ◽  
William A. Beard ◽  
...  

AbstractReactive oxygen species (ROS) oxidize cellular nucleotide pools and cause double strand breaks (DSBs). Non-homologous end-joining (NHEJ) attaches broken chromosomal ends together in mammalian cells. Ribonucleotide insertion by DNA polymerase (pol) μ prepares breaks for end-joining and this is required for successful NHEJ in vivo. We previously showed that pol μ lacks discrimination against oxidized dGTP (8-oxo-dGTP), that can lead to mutagenesis, cancer, aging and human disease. Here we reveal the structural basis for proficient oxidized ribonucleotide (8-oxo-rGTP) incorporation during DSB repair by pol μ. Time-lapse crystallography snapshots of structural intermediates during nucleotide insertion along with computational simulations reveal substrate, metal and side chain dynamics, that allow oxidized ribonucleotides to escape polymerase discrimination checkpoints. Abundant nucleotide pools, combined with inefficient sanitization and repair, implicate pol μ mediated oxidized ribonucleotide insertion as an emerging source of widespread persistent mutagenesis and genomic instability.


2020 ◽  
Vol 9 (5) ◽  
pp. 247-251
Author(s):  
Tilmann Sander ◽  
Anna Jodko-Władzińska ◽  
Stefan Hartwig ◽  
Rüdiger Brühl ◽  
Thomas Middelmann

AbstractThe electrophysiological activities in the human body generate electric and magnetic fields that can be measured noninvasively by electrodes on the skin, or even, not requiring any contact, by magnetometers. This includes the measurement of electrical activity of brain, heart, muscles and nerves that can be measured in vivo and allows to analyze functional processes with high temporal resolution. To measure these extremely small magnetic biosignals, traditionally highly sensitive superconducting quantum-interference devices have been used, together with advanced magnetic shields. Recently, they have been complemented in usability by a new class of sensors, optically pumped magnetometers (OPMs). These quantum sensors offer a high sensitivity without requiring cryogenic temperatures, allowing the design of small and flexible sensors for clinical applications. In this letter, we describe the advantages of these upcoming OPMs in two exemplary applications that were recently carried out at Physikalisch-Technische Bundesanstalt (PTB): (1) magnetocardiography (MCG) recorded during exercise and (2) auditory-evoked fields registered by magnetoencephalography.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolette Driscoll ◽  
Richard E. Rosch ◽  
Brendan B. Murphy ◽  
Arian Ashourvan ◽  
Ramya Vishnubhotla ◽  
...  

AbstractNeurological disorders such as epilepsy arise from disrupted brain networks. Our capacity to treat these disorders is limited by our inability to map these networks at sufficient temporal and spatial scales to target interventions. Current best techniques either sample broad areas at low temporal resolution (e.g. calcium imaging) or record from discrete regions at high temporal resolution (e.g. electrophysiology). This limitation hampers our ability to understand and intervene in aberrations of network dynamics. Here we present a technique to map the onset and spatiotemporal spread of acute epileptic seizures in vivo by simultaneously recording high bandwidth microelectrocorticography and calcium fluorescence using transparent graphene microelectrode arrays. We integrate dynamic data features from both modalities using non-negative matrix factorization to identify sequential spatiotemporal patterns of seizure onset and evolution, revealing how the temporal progression of ictal electrophysiology is linked to the spatial evolution of the recruited seizure core. This integrated analysis of multimodal data reveals otherwise hidden state transitions in the spatial and temporal progression of acute seizures. The techniques demonstrated here may enable future targeted therapeutic interventions and novel spatially embedded models of local circuit dynamics during seizure onset and evolution.


Sign in / Sign up

Export Citation Format

Share Document