scholarly journals Analysis of contributory gut microbiota and lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model

2018 ◽  
Author(s):  
Wen-Yuan Yang ◽  
Yuejia Lee ◽  
Hsinyi Lu ◽  
Chung-Hsi Chou ◽  
Chinling Wang

AbstractGut microbiota has been demonstrated to be involved in intestinal nutrition, defense, and immunity, as well as participating in disease progression. This study was to investigate gut microbiota changes in chickens challenged with netB-positive Clostridium perfringens strain 1 (CP1) and/or the predisposing Eimeria species (Eimeria). In addition, the effects of lauric acid, a medium-chain fatty acid (MCFA), on NE reduction and modulation of microbiota were evaluated. The results demonstrated that microbial communities in the jejunum were distinct from those in the cecum, and the microbial community change was more significant in jejunum. Challenge of CP1 in conjunction with Eimeria significantly reduced species diversity in jejunal microbiota, but cecal microbiota remained stable. In the jejunum, CP1 challenge increased the abundance of the genera of Clostridium sensu stricto 1, Escherichia Shigella, and Weissella, but significantly decreased the population of Lactobacillus. Eimeria infection on its own was unable to promote NE, demonstrating decrements of Clostridium sensu stricto 1 and Lactobacillus. Co-infection with CP1 and Eimeria reproduced the majority of NE lesions with significant increment of Clostridium sensu stricto 1 and reduction in Lactobacillus. The changes of these two taxa increased the severity of NE lesions. Further analyses of metagenomeSeq, STAMP, and LEfSe showed significant overgrowth of Clostridium sensu stricto 1 was associated with NE and Eimeria infection than C. perfringens challenge alone. The supplementation of lauric acid did not reduce NE incidence and severity but decreased the relative abundance of Escherichia Shigella. In conclusion, significant overgrowth of Clostridium sensu stricto 1 in the jejunm is the major microbiota contributory to NE. Controlling proliferation of this taxon in the jejunum should be the niche for developing effective strategies against NE.

PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0205784 ◽  
Author(s):  
Wen-Yuan Yang ◽  
Yuejia Lee ◽  
Hsinyi Lu ◽  
Chung-Hsi Chou ◽  
Chinling Wang

2021 ◽  
Author(s):  
Yi Fan ◽  
Andrew Forgie ◽  
Tingting Ju ◽  
Camila Marcolla ◽  
Tom Inglis ◽  
...  

To maintain food safety and flock health in broiler chicken production, biosecurity approaches to keep chicken barns free of pathogens are important. Canadian broiler chicken producers must deep clean their barns with chemical disinfectants at least once annually (full disinfection; FD) and may wash with water (water-wash; WW) throughout the year. However, many producers use FD after each flock, assuming a greater efficacy of more stringent cleaning protocols, although little information is known regarding how these two cleaning practices affect pathogen population and gut microbiota. In the current study, a cross-over experiment over four production cycles was conducted in seven commercial chicken barns to compare WW and FD. We evaluated the effects of barn cleaning method on the commercial broiler performance, cecal microbiota composition, pathogen occurrence and abundance, as well as short-chain fatty acid concentrations in the month-old broiler gut. The 30-day body weight and mortality rate were not affected by the barn cleaning methods. The WW resulted in a modest but significant effect on the structure of broiler cecal microbiota (weighted-UniFrac; adonis p = 0.05, and unweighted-UniFrac; adonis p = 0.01), with notable reductions in Campylobacter jejuni occurrence and abundance. In addition, the WW group had increased cecal acetate, butyrate and total short-chain fatty acid concentrations, which were negatively correlated with C. jejuni abundance. Our results support the use of WW over FD to enhance the activity of the gut microbiota and potentially reduce zoonotic transmission of C. jejuni in broiler production without previous disease challenges.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104739 ◽  
Author(s):  
Dragana Stanley ◽  
Shu-Biao Wu ◽  
Nicholas Rodgers ◽  
Robert A. Swick ◽  
Robert J. Moore

2021 ◽  
Vol 12 ◽  
Author(s):  
Quail Das ◽  
Julie Shay ◽  
Martin Gauthier ◽  
Xianhua Yin ◽  
Teri-Lyn Hasted ◽  
...  

Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird’s performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non–vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2027
Author(s):  
Doaa Ibrahim ◽  
Tamer Ahmed Ismail ◽  
Eman Khalifa ◽  
Shaimaa A. Abd El-Kader ◽  
Dalia Ibrahim Mohamed ◽  
...  

Necrotic enteritis (NE) caused by Clostridium perfringens (C. perfringens) results in impaired bird growth performance and increased production costs. Nanotechnology application in the poultry industry to control NE outbreaks is still not completely clarified. Therefore, the efficacy of dietary garlic nano-hydrogel (G-NHG) on broilers growth performance, intestinal integrity, economic returns and its potency to alleviate C. perfringens levels using NE challenge model were addressed. A total of 1200 male broiler chicks (Ross 308) were assigned into six groups; four supplemented with 100, 200, 300 or 400 mg of G-NHG/kg diet and co-challenged with C. perfringens at 21, 22 and 23 d of age and two control groups fed basal diet with or without C. perfringens challenge. Over the total growing period, the 400 mg/kg G-NHG group had the most improved body weight gain and feed conversion efficiency regardless of challenge. Parallel with these results, the mRNA expression of genes encoding digestive enzymes (alpha 2A amylase (AMY2A), pancreatic lipase (PNLIP) and cholecystokinin (CCK)) and intestinal barriers (junctional adhesion molecule-2 (JAM-2), occludin and mucin-2 (Muc-2)) were increased in groups fed G-NHG at higher levels to be nearly similar to those in the unchallenged group. At 14 d post challenge, real-time PCR results revealed that inclusion of G-NHG led to a dose-dependently decrease in the C. perfringens population, thereby decreasing the birds’ intestinal lesion score and mortality rates. Using 400 mg/kg of G-NHG remarkably ameliorated the adverse effects of NE caused by C. perfringens challenge, which contributed to better growth performance of challenged birds with rational economic benefits.


Anaerobe ◽  
2021 ◽  
pp. 102377
Author(s):  
Hiramoni Sarmah ◽  
Ritam Hazarika ◽  
Shantonu Tamuly ◽  
Pankaj Deka ◽  
Seeralan Manoharan ◽  
...  

2021 ◽  
Author(s):  
Shiyi Lu ◽  
Deirdre Mikkelsen ◽  
Hong Yao ◽  
Barbara Williams ◽  
Bernadine Flanagan ◽  
...  

Plant cell walls as well as their component polysaccharides in foods can be utilized to alter and maintain a beneficial human gut microbiota, but it is not known whether the...


Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 487
Author(s):  
Tao Zhang ◽  
Hao Ding ◽  
Lan Chen ◽  
Yueyue Lin ◽  
Yongshuang Gong ◽  
...  

Elucidation of the mechanism of lipogenesis and fat deposition is essential for controlling excessive fat deposition in chicken. Studies have shown that gut microbiota plays an important role in regulating host lipogenesis and lipid metabolism. However, the function of gut microbiota in the lipogenesis of chicken and their relevant mechanisms are poorly understood. In the present study, the gut microbiota of chicken was depleted by oral antibiotics. Changes in cecal microbiota and metabolomics were detected by 16S rRNA sequencing and ultra-high performance liquid chromatography coupled with MS/MS (UHPLC–MS/MS) analysis. The correlation between antibiotic-induced dysbiosis of gut microbiota and metabolites and lipogenesis were analysed. We found that oral antibiotics significantly promoted the lipogenesis of chicken. 16S rRNA sequencing indicated that oral antibiotics significantly reduced the diversity and richness and caused dysbiosis of gut microbiota. Specifically, the abundance of Proteobacteria was increased considerably while the abundances of Bacteroidetes and Firmicutes were significantly decreased. At the genus level, the abundances of genera Escherichia-Shigella and Klebsiella were significantly increased while the abundances of 12 genera were significantly decreased, including Bacteroides. UHPLC-MS/MS analysis showed that antibiotic-induced dysbiosis of gut microbiota significantly altered cecal metabolomics and caused declines in abundance of 799 metabolites and increases in abundance of 945 metabolites. Microbiota-metabolite network revealed significant correlations between 4 differential phyla and 244 differential metabolites as well as 15 differential genera and 304 differential metabolites. Three metabolites of l-glutamic acid, pantothenate acid and N-acetyl-l-aspartic acid were identified as potential metabolites that link gut microbiota and lipogenesis in chicken. In conclusion, our results showed that antibiotic-induced dysbiosis of gut microbiota promotes lipogenesis of chicken by altering relevant metabolomics. The efforts in this study laid a basis for further study of the mechanisms that gut microbiota regulates lipogenesis and fat deposition of chicken.


Sign in / Sign up

Export Citation Format

Share Document