scholarly journals Dynamic urinary proteomic analysis in a Walker 256 intracerebral tumor model

2018 ◽  
Author(s):  
Linpei Zhang ◽  
Yuqiu Li ◽  
Wenshu Meng ◽  
Yanying Ni ◽  
Youhe Gao

AbstractPatients with primary and metastatic brain cancer have an extremely poor prognosis, mostly due to the late diagnosis of disease. Urine, which lacks homeostatic mechanisms, is an ideal biomarker source that accumulates early and highly sensitive changes to provides information about the early stage of disease. A rat model mimicking the local tumor growth process in the brain was established with intracerebral Walker 256 (W256) cell injection. Urine samples were collected on days 3, 5 and 8 after injection and then analyzed by LC-MS/MS. In the intracerebral W256 model, no obvious clinical manifestations changes or abnormal MRI signals were found on days 3 and 5; at these time points, nine proteins were changed significantly in the urine of all 8 tumor rats. On day 8, when tumors were detected by MRI, twenty-five differential proteins were identified, including 10 proteins that have been reported to be closely related to tumor metastasis or brain tumors. The differential urinary proteomes were compared with those from the subcutaneous W256 model and the intracerebral C6 model. Few differential proteins overlapped. Specific differential protein patterns were observed among the three models, indicating that the urinary proteome can reflect the difference when tumor cells with different growth characteristics are inoculated into the brain and when identical tumor cells are inoculated into different areas, specifically, the subcutis and the brain.

1993 ◽  
Vol 78 (6) ◽  
pp. 959-965 ◽  
Author(s):  
Vittorio M. Morreale ◽  
Barbara H. Herman ◽  
Violette Der-Minassian ◽  
Miklós Palkovits ◽  
Phillip Klubes ◽  
...  

✓ A tumor model involving stereotactically implanted culture-reared tumor cells is presented. Stainless steel cannulas were stereotactically and permanently implanted into the caudate nucleus of 30 rats. The animals were separated into two groups. In Group I, 15 animals received a 10-µl injection containing 106 C6 glioblastoma cells (five rats), 106 Walker 256 breast carcinoma cells (five rats), or cell medium (five rats). The coordinates were A(+1.5), L(+3.0), and DV(−5.0). In Group II, the coordinates were changed to A(+1.0), L(+3.0), and DV(−5.0) and the same number of rats received a 1-µl injection containing 105 cells of each tumor in an attempt to produce more focal tumors. Two weeks after implantation, brain sections were stained with cresyl violet and a subset was stained for glial fibrillary acidic protein (GFAP). A computerized morphometric analysis system was used to quantify tumor size. In Group I, the mean C6 tumor areas (± standard error of the mean) at specific coordinates were (in sq mm): A(+4.7) 0.4 ± 0.2; A(+3.7) 3.5 ≥ 1.1; A(+2.7) 5.7 ± 1.7; A(+1.7) 9.5 ± 2.3; A(+0.7) 7.5 ± 3.2; A(−0.3) 3.7 ± 2.9; and A(−1.3) 0.3 ± 0.3. A nearly identical tumor mass and extension into the brain was produced in rats injected with Walker 256 cells. Similar C6 tumor areas were indicated in adjacent sections stained with cresyl violet and GFAP. Tumor was found in the caudate nucleus in all 10 rats, but not in the nucleus accumbens, fornix, or hippocampus. In Group II animals, tumor magnitude and extension into the brain were greatly reduced. The 106 cells in the 10-µl volume was the most reliable tumor load for obtaining uniform tumors in different animals. The similarity of tumor distribution across different animals was indicated by the low variance of tumor area at specific anteroposterior coordinates. Reproducible and well-circumscribed caudate nucleus tumors were produced using this stereotactic procedure.


2018 ◽  
Vol 6 (1) ◽  
pp. 38-48
Author(s):  
Gina Dwi Anggraini ◽  
Septiyanti Septiyanti ◽  
Dahrizal Dahrizal

Stroke is lost brain function caused by stop his blood supply to the brain. As a result of the disruption of oxygen to the brain needs can occur the clinical manifestations included the weakness of some or all of the body limbs, one of over ekstremities so that the patient could not doing the activity because of the limbs weakness and they needs exercise for preveting disability. Objective is Know the effect of Range Of Motion (ROM) Spherical Grip on muscle strenght of upper extremity on stroke patients. The research used quasi-experimental with pretest and posttest with control group. The population in this study is all stroke patients in the neurological specialist RSUD dr. M. Yunus of Bengkulu City. The Sampling technique used is Cluster Sampling. The number of sample is 32. Instruments used for manual muscle testing. Test for normality using the Kolmogorov-Smirnov and analysis techniques using Wilcoxon Signed Ranks Test  and Mann-Whitney with 95% confidence level (  = 0,05). Muscle strenght of the finger mean in the control group 2,44 increase to 2,63 with the difference 0,1875. In the intervention group mean 2,44 increase to 3,13 with the difference 0,6875. Muscle strenght of the wrist mean in the control group 2,38 increase to 2,56 with the difference 0,1875. In the intervention group mean 2,25 increase to 3,00 with the difference 0,75. The result obtained p-value 0,011 finger hand and p-value 0,027 wrist. Exercise Range Of Motion (ROM) Spherical Grip is effective in increase muscle strenght of over extremities on stroke patients.


2019 ◽  
Author(s):  
Yameng Zhang ◽  
Yufei Gao ◽  
Youhe Gao

AbstractUrine, as a potential biomarker source among the body fluids, can accumulate many changes in the body due to the lack of a mechanism to maintain a homeostatic state. Previous studies have demonstrated that proteomic technology can find many potential biomarkers to reflect different diseases in the urine. This study aims to detect early changes in the urinary proteome in a rat liver tumor model. The tumor model was established with the Walker-256 carcinosarcoma cell line (W256). Compared to before the injection, ninety-five differential proteins were significantly changed in the experimental rats. At day 3, twelve proteins were identified in the absence of pathological changes, and four of them were altered at all four time-points (B2MG, VCAM1, HA11, and LG3BP). Seven had previously been associated with liver cancer. At day 5, fifty-two differential proteins were identified. At day 7 and day 11, there was a significant decrease in the body weight of the rats, and tumor tissue was observed in the liver. Fifty-two and forty differential proteins were changed significantly at day 7 and day 11, respectively. Of the proteins that were identified at these three time-points, and twenty-four were reported to be associated with liver cancer. Comparing the differential urinary proteins and biological processes of liver tumor model with those in different models of W256 grown in other organs, specific differential protein patterns were found among the four models, which indicates that the differential urinary proteins can reflect the differences when the same tumor cell grown in different organs.SignificanceThis study demonstrated that (1) the rat liver tumor model caused early changes in urinary proteins may give new insight into the early diagnosis of liver cancer; (2) the same tumor cell grown in different organs can be reflected in differential urinary proteins.


2019 ◽  
Vol 5 (1) ◽  
pp. 20 ◽  
Author(s):  
Jakub Godlewski ◽  
Jacek Lenart ◽  
Elzbieta Salinska

The mammalian brain is made up of billions of neurons and supporting cells (glial cells), intricately connected. Molecular perturbations often lead to neurodegeneration by progressive loss of structure and malfunction of neurons, including their death. On the other side, a combination of genetic and cellular factors in glial cells, and less frequently in neurons, drive oncogenic transformation. In both situations, microenvironmental niches influence the progression of diseases and therapeutic responses. Dynamic changes that occur in cellular transcriptomes during the progression of developmental lineages and pathogenesis are controlled through a variety of regulatory networks. These include epigenetic modifications, signaling pathways, and transcriptional and post-transcriptional mechanisms. One prominent component of the latter is small non-coding RNAs, including microRNAs, that control the vast majority of these networks including genes regulating neural stemness, differentiation, apoptosis, projection fates, migration and many others. These cellular processes are also profoundly dependent on the microenvironment, stemness niche, hypoxic microenvironment, and interactions with associated cells including endothelial and immune cells. Significantly, the brain of all other mammalian organs expresses the highest number of microRNAs, with an additional gain in expression in the early stage of neurodegeneration and loss in expression in oncogenesis. However, a mechanistic explanation of the concept of an apparent inverse correlation between the odds of cancer and neurodegenerative diseases is only weakly developed. In this review, we thus will discuss widespread de-regulation of microRNAome observed in these two major groups of brain pathologies. The deciphering of these intricacies is of importance, as therapeutic restoration of pre-pathological microRNA landscape in neurodegeneration must not lead to oncogenesis and vice versa. We thus focus on microRNAs engaged in cellular processes that are inversely regulated in these diseases. We also aim to define the difference in microRNA networks between pro-survival and pro-apoptotic signaling in the brain.


2019 ◽  
Vol 4 (2) ◽  
pp. 84-100 ◽  
Author(s):  
Bibhash C. Mohanta ◽  
Narahari N. Palei ◽  
Vijayaraj Surendran ◽  
Subas C. Dinda ◽  
Jayaraman Rajangam ◽  
...  

Brain tumors arise from an uncontrolled proliferation of neural tissue cells or supportive glial tissue cells within the brain. The diagnosis and therapy of brain tumor is an extremely challenging task. Moreover, absence of early stage symptoms and consequently delays in diagnosis and therapy worsen its severity. Though in the present days, chemotherapeutic approach is the most common therapeutic approach; still it is linked with several precincts. The blood-brain barrier (BBB) is the main hurdle in delivering most of the chemotherapeutic agents as well as imaging agent that leads to insufficient accumulation of therapeutic / imaging agents at tumor site, and prevents adequate destruction of malignant cells. Recently, lipid based nanoparticles are gaining much more interest and are preferred over polymeric nanoparticles owing to their biodegradability, non-toxicity, excellent tumortargeting ability and ease of surface modification. Certain receptors are over expressed in brain tumor cells which confer an opportunity to the researchers for delivering the chemotherapeutic as well as imaging agent particularly to the tumor cells through the surface modification approach of nanoparticles. Ligands like proteins/peptides, carbohydrates, aptamers, antibodies, and antibody fragments are generally conjugated to the surface of the nanoparticles that bind specifically to an over expressed target on the brain tumor cell surface. In the present review, we discuss the diagnostic and therapeutic application of various types of lipid based nanoparticles such as liposomes, niosomes, solid lipid nanoparticles, nanostructured lipid carrier, lipid nanocapsule, and lipid polymer hybrid nanocarriers along with their various surface modified forms for targeting brain tumor.


2019 ◽  
Vol 8 (7) ◽  
pp. 3553-3565 ◽  
Author(s):  
Linpei Zhang ◽  
Yuqiu Li ◽  
Wenshu Meng ◽  
Yanying Ni ◽  
Youhe Gao

2021 ◽  
Vol 12 ◽  
Author(s):  
Qing Zeng ◽  
Lishan Lv ◽  
Xifu Zheng

This study used the classical conditioned acquisition and extinction paradigm to compare which of the two emotions, acquired disgust and acquired fear, was more difficult to extinguish, based on behavioral assessments and the event-related potential (ERP) technique. Behavioral assessments revealed that, following successful conditioned extinction, acquired disgust was more difficult to extinguish. The ERP results showed that, at the early stage of P1, the amplitude of conditioned fear was significantly smaller than that of conditioned disgust, and both were significantly different from the amplitude under neutral conditions; at the middle stage of N2, the difference between the amplitudes of conditioned disgust and conditioned fear disappeared, but they were still significantly different from the amplitudes of conditioned neutral stimuli; at the late stage of P3, the difference between conditioned disgust and conditioned neutral stimuli disappeared, but the difference between conditioned fear and neutral stimuli remained, suggesting that acquired fear was more difficult to extinguish than acquired disgust in terms of how the brain works.


Author(s):  
C. N. Sun ◽  
C. Araoz ◽  
H. J. White

The ultrastructure of a cerebral primitive neuroectodermal tumor has been reported previously. In the present case, we will present some unusual previously unreported membranous structures and alterations in the cytoplasm and nucleus of the tumor cells.Specimens were cut into small pieces about 1 mm3 and immediately fixed in 4% glutaraldehyde in phosphate buffer for two hours, then post-fixed in 1% buffered osmium tetroxide for one hour. After dehydration, tissues were embedded in Epon 812. Thin sections were stained with uranyl acetate and lead citrate.In the cytoplasm of the tumor cells, we found paired cisternae (Fig. 1) and annulate lamellae (Fig. 2) noting that the annulate lamellae were sometimes associated with the outer nuclear envelope (Fig. 3). These membranous structures have been reported in other tumor cells. In our case, mitochondrial to nuclear envelope fusions were often noted (Fig. 4). Although this phenomenon was reported in an oncocytoma, their frequency in the present study is quite striking.


Author(s):  
М.М. Руденок ◽  
А.Х. Алиева ◽  
А.А. Колачева ◽  
М.В. Угрюмов ◽  
П.А. Сломинский ◽  
...  

Несмотря на очевидный прогресс, достигнутый в изучении молекулярно-генетических факторов и механизмов патогенеза болезни Паркинсона (БП), в настоящее время стало ясно, что нарушения в структуре ДНК не описывают весь спектр патологических изменений, наблюдаемых при развитии заболевания. В настоящее время показано, что существенное влияние на патогенез БП могут оказывать изменения на уровне транскриптома. В работе были использованы мышиные модели досимптомной стадии БП, поздней досимптомной и ранней симптомной (РСС) стадиями БП. Для полнотранскриптомного анализа пулов РНК тканей черной субстанции и стриатума мозга мышей использовались микрочипы MouseRef-8 v2.0 Expression BeadChip Kit («Illumina», США). Полученные данные указывают на последовательное вовлечение транскриптома в патогенез БП, а также на то, что изменения на транскриптомном уровне процессов транспорта и митохондриального биогенеза могут играть важную роль в нейродегенерации при БП уже на самых ранних этапах. Parkinson’s disease (PD) is a complex systemic disease, mainly associated with the death of dopaminergic neurons. Despite the obvious progress made in the study of molecular genetic factors and mechanisms of PD pathogenesis, it has now become clear that violations in the DNA structure do not describe the entire spectrum of pathological changes observed during the development of the disease. It has now been shown that changes at the transcriptome level can have a significant effect on the pathogenesis of PD. The authors used models of the presymptomatic stage of PD with mice decapitation after 6 hours (6 h-PSS), presymptomatic stage with decapitation after 24 hours (24 h-PSS), advanced presymptomatic (Adv-PSS) and early symptomatic (ESS) stages of PD. For whole transcriptome analysis of RNA pools of the substantia nigra and mouse striatum, the MouseRef-8 v2.0 Expression BeadChip Kit microchips (Illumina, USA) were used. As a result of the analysis of whole transcriptome data, it was shown that, there are a greater number of statistically significant changes in the tissues of the brain and peripheral blood of mice with Adv-PSS and ESS models of PD compared to 6 h-PSS and 24 h-PSS models. In general, the obtained data indicate the sequential involvement of the transcriptome in the pathogenesis of PD, as well as the fact that changes at the transcriptome level of the processes of transport and mitochondrial biogenesis can play an important role in neurodegeneration in PD at an early stage.


Author(s):  
Shoaib Amin Banday ◽  
Mohammad Khalid Pandit

Introduction: Brain tumor is among the major causes of morbidity and mortality rates worldwide. According to National Brain Tumor Foundation (NBTS), the death rate has nearly increased by as much as 300% over last couple of decades. Tumors can be categorized as benign (non-cancerous) and malignant (cancerous). The type of the brain tumor significantly depends on various factors like the site of its occurrence, its shape, the age of the subject etc. On the other hand, Computer Aided Detection (CAD) has been improving significantly in recent times. The concept, design and implementation of these systems ascend from fairly simple ones to computationally intense ones. For efficient and effective diagnosis and treatment plans in brain tumor studies, it is imperative that an abnormality is detected at an early stage as it provides a little more time for medical professionals to respond. The early detection of diseases has predominantly been possible because of medical imaging techniques developed from past many decades like CT, MRI, PET, SPECT, FMRI etc. The detection of brain tumors however, has always been a challenging task because of the complex structure of the brain, diverse tumor sizes and locations in the brain. Method: This paper proposes an algorithm that can detect the brain tumors in the presence of the Radio-Frequency (RF) inhomoginiety. The algorithm utilizes the Mid Sagittal Plane as a landmark point across which the asymmetry between the two brain hemispheres is estimated using various intensity and texture based parameters. Result: The results show the efficacy of the proposed method for the detection of the brain tumors with an acceptable detection rate. Conclusion: In this paper, we have calculated three textural features from the two hemispheres of the brain viz: Contrast (CON), Entropy (ENT) and Homogeneity (HOM) and three parameters viz: Root Mean Square Error (RMSE), Correlation Co-efficient (CC), and Integral of Absolute Difference (IAD) from the intensity distribution profiles of the two brain hemispheres to predict any presence of the pathology. First a Mid Sagittal Plane (MSP) is obtained on the Magnetic Resonance Images that virtually divides brain into two bilaterally symmetric hemispheres. The block wise texture asymmetry is estimated for these hemispheres using the above 6 parameters.


Sign in / Sign up

Export Citation Format

Share Document