scholarly journals Functional analysis of evolutionary human methylated regions in schizophrenia patients

2019 ◽  
Author(s):  
Niladri Banerjee ◽  
Tatiana Polushina ◽  
Anne-Kristin Stavrum ◽  
Vidar Martin Steen ◽  
Stephanie Le Hellard

AbstractBackgroundRecent studies have implicated variations in DNA methylation in the aetiology of schizophrenia. Genome-wide scans in both brain and blood report differential methylated regions (DMRs) and positions (DMPs) between patients with schizophrenia and healthy controls. Previously, we reported that DMRs where human specific methylation (hDMR) has occurred over evolutionary time are enriched for schizophrenia-associated markers (SCZ_hDMR). However, it is unknown whether these human specific DMRs show variable methylation in patients with schizophrenia.MethodsUsing publicly available data, we investigate if human specific DMRs that harbour genetic variants associated with schizophrenia are differentially methylated between cases and controls.ResultsWe find statistically significant (p < 1e-4) methylation difference in schizophrenia associated human specific DMRs (SCZ hDMR) between brain samples of cases and controls. However, we fail to find evidence of similar differences in methylation in blood samples.ConclusionRegions that are evolutionarily important for human species and that are associated with schizophrenia, also show difference in methylation variation in the brain in patients with schizophrenia.


2018 ◽  
Author(s):  
Boxun Zhao ◽  
Qixi Wu ◽  
Adam Yongxin Ye ◽  
Jing Guo ◽  
Xianing Zheng ◽  
...  

AbstractMounting evidence supports that LINE-1 (L1) retrotransposition can occur postzygotically in healthy and diseased human tissues, contributing to genomic mosaicism in the brain and other somatic tissues of an individual. However, the genomic distribution of somatic L1Hs (Human-specific LINE-1) insertions and their potential impact on carrier cells remain unclear. Here, using a PCR-based targeted bulk sequencing approach, we profiled 9,181 somatic insertions from 20 postmortem tissues from five Rett patients and their matched healthy controls. We identified and validated somatic L1Hs insertions in both cortical neurons and non-brain tissues. In Rett patients, somatic insertions were significantly depleted in exons—mainly contributed by long genes—than healthy controls, implying that cells carrying MECP2 mutations might be defenseless against a second exonic L1Hs insertion. We observed a significant increase of somatic L1Hs insertions in the brain compared with non-brain tissues from the same individual. Compared to germline insertions, somatic insertions were less sense-depleted to transcripts, indicating that they underwent weaker selective pressure on the orientation of insertion. Our observations demonstrate that somatic L1Hs insertions contribute to genomic diversity and MECP2 dysfunction alters their genomic patterns in Rett patients.Author SummaryHuman-specific LINE-1 (L1Hs) is the most active autonomous retrotransposon family in the human genome. Mounting evidence supports that L1Hs retrotransposition occurs postzygotically in the human brain cells, contributing to neuronal genomic diversity, but the extent of L1Hs-driven mosaicism in the brain is debated. In this study, we profiled genome-wide L1Hs insertions among 20 postmortem tissues from Rett patients and matched controls. We identified and validated somatic L1Hs insertions in both cortical neurons and non-brain tissues, with a higher jumping activity in the brain. We further found that MECP2 dysfunction might alter the genomic pattern of somatic L1Hs in Rett patients.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas Salvetat ◽  
Fabrice Chimienti ◽  
Christopher Cayzac ◽  
Benjamin Dubuc ◽  
Francisco Checa-Robles ◽  
...  

AbstractMental health issues, including major depressive disorder, which can lead to suicidal behavior, are considered by the World Health Organization as a major threat to global health. Alterations in neurotransmitter signaling, e.g., serotonin and glutamate, or inflammatory response have been linked to both MDD and suicide. Phosphodiesterase 8A (PDE8A) gene expression is significantly decreased in the temporal cortex of major depressive disorder (MDD) patients. PDE8A specifically hydrolyzes adenosine 3′,5′-cyclic monophosphate (cAMP), which is a key second messenger involved in inflammation, cognition, and chronic antidepressant treatment. Moreover, alterations of RNA editing in PDE8A mRNA has been described in the brain of depressed suicide decedents. Here, we investigated PDE8A A-to-I RNA editing-related modifications in whole blood of depressed patients and suicide attempters compared to age-matched and sex-matched healthy controls. We report significant alterations of RNA editing of PDE8A in the blood of depressed patients and suicide attempters with major depression, for which the suicide attempt took place during the last month before sample collection. The reported RNA editing modifications in whole blood were similar to the changes observed in the brain of suicide decedents. Furthermore, analysis and combinations of different edited isoforms allowed us to discriminate between suicide attempters and control groups. Altogether, our results identify PDE8A as an immune response-related marker whose RNA editing modifications translate from brain to blood, suggesting that monitoring RNA editing in PDE8A in blood samples could help to evaluate depressive state and suicide risk.



2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Doretta Caramaschi ◽  
Charlie Hatcher ◽  
Rosa H. Mulder ◽  
Janine F. Felix ◽  
Charlotte A. M. Cecil ◽  
...  

AbstractThe occurrence of seizures in childhood is often associated with neurodevelopmental impairments and school underachievement. Common genetic variants associated with epilepsy have been identified and epigenetic mechanisms have also been suggested to play a role. In this study, we analyzed the association of genome-wide blood DNA methylation with the occurrence of seizures in ~ 800 children from the Avon Longitudinal Study of Parents and Children, UK, at birth (cord blood), during childhood, and adolescence (peripheral blood). We also analyzed the association between the lifetime occurrence of any seizures before age 13 with blood DNA methylation levels. We sought replication of the findings in the Generation R Study and explored causality using Mendelian randomization, i.e., using genetic variants as proxies. The results showed five CpG sites which were associated cross-sectionally with seizures either in childhood or adolescence (1–5% absolute methylation difference at pFDR < 0.05), although the evidence of replication in an independent study was weak. One of these sites was located in the BDNF gene, which is highly expressed in the brain, and showed high correspondence with brain methylation levels. The Mendelian randomization analyses suggested that seizures might be causal for changes in methylation rather than vice-versa. In conclusion, we show a suggestive link between seizures and blood DNA methylation while at the same time exploring the limitations of conducting such study.



2019 ◽  
Author(s):  
Doretta Caramaschi ◽  
Charlie Hatcher ◽  
Rosa H. Mulder ◽  
Janine F. Felix ◽  
Charlotte A. M. Cecil ◽  
...  

ABSTRACTThe occurrence of seizures in childhood is often associated with neurodevelopmental impairments and school underachievement. Common genetic variants associated with epilepsy have been identified and epigenetic mechanisms have also been suggested to play a role. In this study we analysed the association of genome-wide blood DNA methylation with the occurrence of seizures in ∼800 children from the Avon Longitudinal Study of Parents and Children, UK, at birth (cord blood), during childhood and adolescence (peripheral blood). We also analysed the association between the lifetime occurrence of any seizures before age 13 with blood DNA methylation levels. We sought replication of the findings in the Generation R Study and explored causality using Mendelian randomization, i.e. using genetic variants as proxies. The results showed five CpG sites which were associated cross-sectionally with seizures either in childhood or adolescence (1-5% absolute methylation difference at pFDR<0.05), although the evidence of replication in an independent study was weak. One of these sites was located in the BDNF gene, which is highly expressed in the brain, and showed high correspondence with brain methylation levels. The Mendelian randomization analyses suggested that seizures might be causal for changes in methylation rather than vice-versa. In addition, seizure-associated methylation changes could affect other outcomes such as growth, cognitive skills and educational attainment. In conclusion, we present a link between seizures and DNA methylation which suggests that DNA methylation changes might mediate some of the effects of seizures on growth and neurodevelopment.



1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.



2019 ◽  
Vol 26 (34) ◽  
pp. 6207-6221 ◽  
Author(s):  
Innocenzo Rainero ◽  
Alessandro Vacca ◽  
Flora Govone ◽  
Annalisa Gai ◽  
Lorenzo Pinessi ◽  
...  

Migraine is a common, chronic neurovascular disorder caused by a complex interaction between genetic and environmental risk factors. In the last two decades, molecular genetics of migraine have been intensively investigated. In a few cases, migraine is transmitted as a monogenic disorder, and the disease phenotype cosegregates with mutations in different genes like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine, candidate genes as well as genome-wide association studies have shown that a large number of genetic variants may increase the risk of developing migraine. At present, few studies investigated the genotype-phenotype correlation in patients with migraine. The purpose of this review was to discuss recent studies investigating the relationship between different genetic variants and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in migraineurs is complicated by several confounding factors and, to date, only polymorphisms of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional genomic studies and network analyses are needed to clarify the complex pathways underlying migraine and its clinical phenotypes.



2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Velma Herwanto ◽  
Benjamin Tang ◽  
Ya Wang ◽  
Maryam Shojaei ◽  
Marek Nalos ◽  
...  

Abstract Objectives Hospitalized patients who presented within the last 24 h with a bacterial infection were recruited. Participants were assigned into sepsis and uncomplicated infection groups. In addition, healthy volunteers were recruited as controls. RNA was prepared from whole blood, depleted from beta-globin mRNA and sequenced. This dataset represents a highly valuable resource to better understand the biology of sepsis and to identify biomarkers for severe sepsis in humans. Data description The data presented here consists of raw and processed transcriptome data obtained by next generation RNA sequencing from 105 peripheral blood samples from patients with uncomplicated infections, patients who developed sepsis, septic shock patients, and healthy controls. It is provided as raw sequenced reads and as normalized log2 transformed relative expression levels. This data will allow performing detailed analyses of gene expression changes between uncomplicated infections and sepsis patients, such as identification of differentially expressed genes, co-regulated modules as well as pathway activation studies.



Sign in / Sign up

Export Citation Format

Share Document