scholarly journals Differential effects of diet and weight on taste responses in diet-induced obese mice

2019 ◽  
Author(s):  
Zachary C. Ahart ◽  
Laura E. Martin ◽  
Bailey R. Kemp ◽  
Debarghya Dutta Banik ◽  
Stefan G.E. Roberts ◽  
...  

AbstractThe ever growing obesity epidemic has created a need to develop a better understanding of the underlying mechanisms responsible for this condition. Appetite and consumption are directly influenced by the taste system which determines if potential food items will be ingested or rejected. While previous studies have reported that obese individuals have reduced taste perception, the relationship between these processes is still poorly understood. Earlier work has demonstrated that diet-induced obesity (DIO) directly impairs taste responses, particularly for sweet stimuli. These deficits occurred in the cells located in the oral cavity as well as in the behavioral responses. However, it is not clear if these changes to the taste system are due to obesity or to the high fat diet exposure. The goal of the current study was to determine if diet or excess weight is responsible for the DIO induced taste deficits. Using a combination of live cell imaging, brief-access licking, immunohistochemistry and real-time PCR, we have found that diet and weight gain can each selectivity affect taste. Follow up experiments determined that two key signaling proteins, gustducin and phospholipase Cβ2, are significantly reduced in the high fat diet without weight gain and obese mice, identifying a potential mechanism for the reduced taste responsiveness to some stimuli. Our data indicate that the relationship between obesity and taste is complex and reveal that for some stimuli, diet alone can cause taste deficits, even without the onset of obesity.

2014 ◽  
Vol 5 (3) ◽  
pp. 335-344 ◽  
Author(s):  
M. Li ◽  
D. Gu ◽  
N. Xu ◽  
F. Lei ◽  
L. Du ◽  
...  

The aim of this study was to investigate the mechanisms underlying the involvement of gut microbes in body weight gain of high-fat diet-fed obesity-prone (obese) and obesity-resistant (lean) mice. C57BL/6 mice were grouped into an obese group, a lean group and a normal control group. Both obese and lean mice were fed a high-fat diet while normal control mice were fed a normal diet; they were observed for six weeks. The results showed that lean mice had lower serum lipid levels, body fat and weight gain than obese mice. The ATPase, succinate dehydrogenase and malate dehydrogenase activities in liver as well as oxygen expenditure and rectal temperature of lean mice were significantly lower than in obese mice. As compared with obese mice, the absorption of intestinal carbohydrates but not of fats or proteins was significantly attenuated in lean mice. Furthermore, 16S rRNA abundances of faecal Firmicutes and Bacteroidetes were significantly reduced in lean mice. In addition, faecal β-D-galactosidase activity and short chain fatty acid levels were significantly decreased in lean mice. Expressions of peroxisome proliferator-activated receptor gamma 2 and CCAAT/enhancer binding protein-β in visceral adipose tissues were significantly downregulated in lean mice as compared with obese mice. Resistance to dyslipidaemia and high-fat diet-induced obesity was mediated by ineffective absorption of intestinal carbohydrates but not of fats or proteins, probably through reducing gut Bacteroidetes and Firmicutes contents and lowering of gut carbohydrate metabolism. The regulation of intestinal carbohydrates instead of fat absorption by gut microbes might be a potential treatment strategy for high-fat diet-induced obesity.


2021 ◽  
Author(s):  
Haizhao Song ◽  
Xinchun Shen ◽  
Yang Zhou ◽  
Xiaodong Zheng

Supplementation of black rice anthocyanins (BRAN) alleviated high fat diet-induced obesity, insulin resistance and hepatic steatosis by improvement of lipid metabolism and modification of the gut microbiota.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hak Joo Choi ◽  
Hwa Young Kim ◽  
Kyoung Sik Park

A variety of natural products have been explored for their antiobesity potential and widely used to develop dietary supplements for the prevention of weight gain from excess body fat. In an attempt to find a natural antiobesity agent, this study was designed to evaluate the antiobesity activity of a novel herbal formulation LI85008F composed of extracts from three medicinal plants in high-fat diet- (HFD-) induced obese mice. After the thirteen-week oral administration of the test materials to mice, the body weight gain, whole-body fat mass, adipose tissue weight, and the expression levels of obesity-related proteins were measured. Our results indicated that LI85008F can suppress body weight gain and lower whole-body fat mass in HFD-induced obese mice. Significant decreases in epididymal and retroperitoneal fat mass were observed in LI85008F-treated groups compared with the HFD-fed control group ( p < 0.05 ). Furthermore, the oral administration of LI85008F caused significant decreases in the expression level of adipogenic (C/EBPα and PPARγ) and lipogenic (ACC) markers and notable increases in the production level of thermogenetic (AMPKα, PGC1α and UCP1) and lipolytic (HSL) proteins. These findings suggest that LI85008F holds great promise for a novel herbal formulation with antiobesity activities, preventing body fat accumulation and altering lipid metabolism.


2020 ◽  
Vol 11 (3) ◽  
pp. 2418-2426 ◽  
Author(s):  
Mailin Gan ◽  
Linyuan Shen ◽  
Shujie Wang ◽  
Zhixian Guo ◽  
Ting Zheng ◽  
...  

Genistein may regulate lipid metabolism in adipose tissue of obese mice by regulating the expression of miR-222 and its target genes, BTG2 and adipor1.


2019 ◽  
Vol 7 (1) ◽  
pp. e000783 ◽  
Author(s):  
Liang Xu ◽  
Naoto Nagata ◽  
Guanliang Chen ◽  
Mayumi Nagashimada ◽  
Fen Zhuge ◽  
...  

ObjectiveWe reported previously that empagliflozin—a sodium-glucose cotransporter (SGLT) 2 inhibitor—exhibited preventive effects against obesity. However, it was difficult to extrapolate these results to human subjects. Here, we performed a therapeutic study, which is more relevant to clinical situations in humans, to investigate antiobesity effects of empagliflozin and illustrate the mechanism underlying empagliflozin-mediated enhanced fat browning in obese mice.Research design and methodsAfter 8 weeks on a high-fat diet (HFD), C57BL/6J mice exhibited obesity, accompanied by insulin resistance and low-grade chronic inflammation. Cohorts of obese mice were continued on the HFD for an additional 8-week treatment period with or without empagliflozin.ResultsTreatment with empagliflozin for 8 weeks markedly increased glucose excretion in urine, and suppressed HFD-induced weight gain, insulin resistance and hepatic steatosis. Notably, empagliflozin enhanced oxygen consumption and carbon dioxide production, leading to increased energy expenditure. Consistently, the level of uncoupling protein 1 expression was increased in both brown and white (WAT) adipose tissues of empagliflozin-treated mice. Furthermore, empagliflozin decreased plasma levels of interleukin (IL)-6 and monocyte chemoattractant protein-1, but increased plasma levels of IL-33 and adiponectin in obese mice. Finally, we found that empagliflozin reduced M1-polarized macrophage accumulation, while inducing the anti-inflammatory M2 phenotype of macrophages in the WAT and liver, thereby attenuating obesity-related chronic inflammation.ConclusionsTreatment with empagliflozin attenuated weight gain by increasing energy expenditure and adipose tissue browning, and alleviated obesity-associated inflammation and insulin resistance by alternative macrophage activation in the WAT and liver of obese mice.


2018 ◽  
Vol 9 (2) ◽  
pp. 1079-1087 ◽  
Author(s):  
Mei Cheng ◽  
Xin Zhang ◽  
Jieyu Zhu ◽  
Lu Cheng ◽  
Jinxuan Cao ◽  
...  

We investigate the modulatory effect of oolong tea polyphenols on the intestinal microbiota in human flora-associated high fat diet induced obese mice.


Author(s):  
Heon-Myung Lee ◽  
Hong-Kun Rim ◽  
Jong-Hwan Seo ◽  
Yoon-Bum Kook ◽  
Sung-Kew Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document