scholarly journals Resting-state functional connectivity modulates the BOLD activation induced by nucleus accumbens stimulation in the swine brain

2019 ◽  
Author(s):  
Shinho Cho ◽  
Jan T. Hachmann ◽  
Irena Balzekas ◽  
Myung-Ho In ◽  
Lindsey G. Andres-Beck ◽  
...  

ABSTRACTWhile it is known that the clinical efficacy of deep brain stimulation (DBS) alleviates motor-related symptoms, cognitive and behavioral effects of DBS and its action mechanism on brain circuits are not clearly understood. By combining functional magnetic resonance imaging (fMRI) and DBS, we investigated the pattern of blood-oxygenation-level-dependent (BOLD) signal changes induced by stimulating the nucleus accumbens and how inter-regional resting-state functional connectivity is related with the stimulation DBS effect in a healthy swine model. We found that the pattern of stimulation-induced BOLD activation was diffused across multiple functional networks including the prefrontal, limbic, and thalamic regions, altering inter-regional functional connectivity after stimulation. Furthermore, our results showed that the strength of the DBS effect is closely related to the strength of inter-regional resting-state functional connectivity including stimulation locus and remote brain regions. Our results reveal the impact of nucleus accumbens stimulation on major functional networks, highlighting functional connectivity may mediate the modulation effect of DBS via large-scale brain networks.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Federica Contò ◽  
Grace Edwards ◽  
Sarah Tyler ◽  
Danielle Parrott ◽  
Emily Grossman ◽  
...  

Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Reema Shafi ◽  
Adrian P. Crawley ◽  
Maria Carmela Tartaglia ◽  
Charles H. Tator ◽  
Robin E. Green ◽  
...  

AbstractConcussions are associated with a range of cognitive, neuropsychological and behavioral sequelae that, at times, persist beyond typical recovery times and are referred to as postconcussion syndrome (PCS). There is growing support that concussion can disrupt network-based connectivity post-injury. To date, a significant knowledge gap remains regarding the sex-specific impact of concussion on resting state functional connectivity (rs-FC). The aims of this study were to (1) investigate the injury-based rs-FC differences across three large-scale neural networks and (2) explore the sex-specific impact of injury on network-based connectivity. MRI data was collected from a sample of 80 concussed participants who fulfilled the criteria for postconcussion syndrome and 31 control participants who did not have any history of concussion. Connectivity maps between network nodes and brain regions were used to assess connectivity using the Functional Connectivity (CONN) toolbox. Network based statistics showed that concussed participants were significantly different from healthy controls across both salience and fronto-parietal network nodes. More specifically, distinct subnetwork components were identified in the concussed sample, with hyperconnected frontal nodes and hypoconnected posterior nodes across both the salience and fronto-parietal networks, when compared to the healthy controls. Node-to-region analyses showed sex-specific differences across association cortices, however, driven by distinct networks. Sex-specific network-based alterations in rs-FC post concussion need to be examined to better understand the underlying mechanisms and associations to clinical outcomes.


2019 ◽  
Vol 105 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Lisa Parikh ◽  
Dongju Seo ◽  
Cheryl Lacadie ◽  
Renata Belfort-Deaguiar ◽  
Derek Groskreutz ◽  
...  

Abstract Context Individuals with type 1 diabetes mellitus (T1DM) have alterations in brain activity that have been postulated to contribute to the adverse neurocognitive consequences of T1DM; however, the impact of T1DM and hypoglycemic unawareness on the brain’s resting state activity remains unclear. Objective To determine whether individuals with T1DM and hypoglycemia unawareness (T1DM-Unaware) had changes in the brain resting state functional connectivity compared to healthy controls (HC) and those with T1DM and hypoglycemia awareness (T1DM-Aware). Design Observational study. Setting Academic medical center. Participants 27 individuals with T1DM and 12 HC volunteers participated in the study. Intervention All participants underwent blood oxygenation level dependent (BOLD) resting state functional magnetic brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dL)–hypoglycemic (60 mg/dL) clamp. Outcome Changes in resting state functional connectivity. Results Using 2 separate methods of functional connectivity analysis, we identified distinct differences in the resting state brain responses to mild hypoglycemia between HC, T1DM-Aware, and T1DM-Unaware participants, particularly in the angular gyrus, an integral component of the default mode network (DMN). Furthermore, changes in angular gyrus connectivity also correlated with greater symptoms of hypoglycemia (r = 0.461, P = 0.003) as well as higher scores of perceived stress (r = 0.531, P = 0.016). Conclusion These findings provide evidence that individuals with T1DM have changes in the brain’s resting state connectivity patterns, which may be further associated with differences in awareness to hypoglycemia. These changes in connectivity may be associated with alterations in functional outcomes among individuals with T1DM.


Author(s):  
Yicheng Long ◽  
Zhening Liu ◽  
Calais Kin-yuen Chan ◽  
Guowei Wu ◽  
Zhimin Xue ◽  
...  

AbstractSchizophrenia and bipolar disorder share some common clinical features and are both characterized by aberrant resting-state functional connectivity (FC). However, little is known about the common and specific aberrant features of the dynamic FC patterns in these two disorders. In this study, we explored the differences in dynamic FC among schizophrenia patients (n = 66), type I bipolar disorder patients (n = 53) and healthy controls (n = 66), by comparing temporal variabilities of FC patterns involved in specific brain regions and large-scale brain networks. Compared with healthy controls, both patient groups showed significantly increased regional FC variabilities in subcortical areas including the thalamus and basal ganglia, as well as increased inter-network FC variability between the thalamus and sensorimotor areas. Specifically, more widespread changes were found in the schizophrenia group, involving increased FC variabilities in sensorimotor, visual, attention, limbic and subcortical areas at both regional and network levels, as well as decreased regional FC variabilities in the default-mode areas. The observed alterations shared by schizophrenia and bipolar disorder may help to explain their overlapped clinical features; meanwhile, the schizophrenia-specific abnormalities in a wider range may support that schizophrenia is associated with more severe functional brain deficits than bipolar disorder.


2021 ◽  
Author(s):  
Maxi Becker ◽  
Dimitris Repantis ◽  
Martin Dresler ◽  
Simone Kuehn

Stimulants like methylphenidate, modafinil and caffeine have repeatedly shown to enhance cognitive processes such as attention and memory. However, brain-functional mechanisms underlying such cognitive enhancing effects of stimulants are still poorly characterized. Here, we utilized behavioral and resting-state fMRI data from a double-blind randomized placebo-controlled study of methylphenidate, modafinil and caffeine in 48 healthy male adults. The results show that performance in different memory tasks is enhanced, and functional connectivity (FC) specifically between the fronto-parietal (FPN) and default mode (DMN) network is modulated by the stimulants in comparison to placebo. Decreased negative connectivity between right prefrontal and medial parietal but also between medial temporal lobe and visual brain regions predicted stimulant-induced latent memory enhancement. We discuss dopamine's role in attention and memory as well as its ability to modulate FC between large-scale neural networks (e.g. FPN and DMN) as a potential cognitive enhancement mechanism.


2020 ◽  
Vol 26 (20) ◽  
pp. 2327-2333 ◽  
Author(s):  
Amelia Romei ◽  
Katharina Voigt ◽  
Antonio Verdejo-Garcia

People with Binge Eating Disorder (BED) exhibit heightened sensitivity to rewarding stimuli and elevated activity in reward-related brain regions, including the orbitofrontal cortex (OFC), ventral striatum (VS) and insula, during food-cue exposure. BED has also been associated with altered patterns of functional connectivity during resting-state. Investigating neural connectivity in the absence of task stimuli provides knowledge about baseline communication patterns that may influence the behavioural and cognitive manifestation of BED. Elevated resting-state functional connectivity (rsFC) between reward-related brain regions may contribute to uncontrolled eating bouts observed in BED, through heightened food-cue sensitivity and food-craving. The impact of homeostatic state on rsFC of the reward system has not yet been investigated in people with BED. Homeostatic dysfunction is a key driver of excessive food consumption in obesity, whereby rsFC between rewardrelated brain regions does not attenuate during satiety. Future studies should investigate BED related differences in rsFC within the reward system during hunger and satiety, in order to determine whether individuals with BED display an abnormal neural response to changes in homeostatic state. This knowledge would further enhance current understandings of the mechanisms contributing to BED, potentially implicating both reward and homeostatic dysfunctions as drivers of BED.


2020 ◽  
Author(s):  
F. Contò ◽  
G. Edwards ◽  
S. Tyler ◽  
D. Parrott ◽  
E.D. Grossman ◽  
...  

AbstractTranscranial Random Noise Stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for four consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or sham stimulation. We measured resting state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity is a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting-Chun Fang ◽  
Chun-Ming Chen ◽  
Ming-Hong Chang ◽  
Chen-Hao Wu ◽  
Yi-Jen Guo

Background: Blepharospasm (BSP) and hemifacial spasm (HFS) are both facial hyperkinesia however BSP is thought to be caused by maladaptation in multiple brain regions in contrast to the peripherally induced cause in HFS. Plausible coexisting pathophysiologies between these two distinct diseases have been proposed.Objectives: In this study, we compared brain resting state functional connectivity (rsFC) and quantitative thermal test (QTT) results between patients with BSP, HFS and heathy controls (HCs).Methods: This study enrolled 12 patients with BSP, 11 patients with HFS, and 15 HCs. All subjects received serial neuropsychiatric evaluations, questionnaires determining disease severity and functional impairment, QTT, and resting state functional MRI. Image data were acquired using seed-based analyses using the CONN toolbox.Results: A higher cold detection threshold was found in the BSP and HFS patients compared to the HCs. The BSP and HFS patients had higher rsFC between the anterior cerebellum network and left occipital regions compared to the HCs. In all subjects, impaired cold detection threshold in the QTT of lower extremities had a correlation with higher rsFC between the anterior cerebellar network and left lingual gyrus. Compared to the HCs, increased rsFC in right postcentral gyrus in the BSP patients and decreased rsFC in the right amygdala and frontal orbital cortex in the HFS subjects were revealed when the anterior cerebellar network was used as seed.Conclusions: Dysfunction of sensory processing detected by the QTT is found in the BSP and HSP patients. Altered functional connectivity between the anterior cerebellar network and left occipital region, especially the Brodmann area 19, may indicate the possibility of shared pathophysiology among BSP, HFS, and impaired cold detection threshold. Further large-scale longitudinal study is needed for testing this theory in the future.


Sign in / Sign up

Export Citation Format

Share Document