scholarly journals Tau pathology in cognitively normal older adults

2019 ◽  
Author(s):  
Jacob Ziontz ◽  
Murat Bilgel ◽  
Andrea T. Shafer ◽  
Abhay Moghekar ◽  
Wendy Elkins ◽  
...  

AbstractINTRODUCTIONTau pathology, a hallmark of Alzheimer’s disease, is observed in the brains of virtually all individuals over 70.METHODSUsing 18F-AV-1451 (18F-flortaucipir) PET, we evaluated tau pathology in 54 cognitively normal participants (mean age 77.5, SD 8.9) from the Baltimore Longitudinal Study of Aging. We assessed associations between PET signal and age, sex, race, and amyloid positivity. We investigated relationships between regional signal and retrospective rates of change in regional volumes and cognitive function adjusting for age, sex, and amyloid status.RESULTSGreater age, male sex, black race, and amyloid positivity were associated with higher 18F-AV-1451 retention in distinct brain regions. Retention in the entorhinal cortex was associated with lower entorhinal volume (β = −1.124, SE = 0.485, p = 0.025) and a steeper decline in memory performance (β = −0.086, SE = 0.039, p = 0.029).DISCUSSIONAssessment of medial temporal tau pathology will provide insights into early structural brain changes associated with later cognitive impairment and Alzheimer’s disease.

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Joseph S. Reddy ◽  
Mariet Allen ◽  
Charlotte C. G. Ho ◽  
Stephanie R. Oatman ◽  
Özkan İş ◽  
...  

AbstractCerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer’s disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = −3.70 [95% CI −0.49—−0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Patricia Yuste-Checa ◽  
Victoria A. Trinkaus ◽  
Irene Riera-Tur ◽  
Rahmi Imamoglu ◽  
Theresa F. Schaller ◽  
...  

AbstractSpreading of aggregate pathology across brain regions acts as a driver of disease progression in Tau-related neurodegeneration, including Alzheimer’s disease (AD) and frontotemporal dementia. Aggregate seeds released from affected cells are internalized by naïve cells and induce the prion-like templating of soluble Tau into neurotoxic aggregates. Here we show in a cellular model system and in neurons that Clusterin, an abundant extracellular chaperone, strongly enhances Tau aggregate seeding. Upon interaction with Tau aggregates, Clusterin stabilizes highly potent, soluble seed species. Tau/Clusterin complexes enter recipient cells via endocytosis and compromise the endolysosomal compartment, allowing transfer to the cytosol where they propagate aggregation of endogenous Tau. Thus, upregulation of Clusterin, as observed in AD patients, may enhance Tau seeding and possibly accelerate the spreading of Tau pathology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boris Guennewig ◽  
Julia Lim ◽  
Lee Marshall ◽  
Andrew N. McCorkindale ◽  
Patrick J. Paasila ◽  
...  

AbstractTau pathology in Alzheimer’s disease (AD) spreads in a predictable pattern that corresponds with disease symptoms and severity. At post-mortem there are cortical regions that range from mildly to severely affected by tau pathology and neuronal loss. A comparison of the molecular signatures of these differentially affected areas within cases and between cases and controls may allow the temporal modelling of disease progression. Here we used RNA sequencing to explore differential gene expression in the mildly affected primary visual cortex and moderately affected precuneus of ten age-, gender- and RNA quality-matched post-mortem brains from AD patients and healthy controls. The two regions in AD cases had similar transcriptomic signatures but there were broader abnormalities in the precuneus consistent with the greater tau load. Both regions were characterised by upregulation of immune-related genes such as those encoding triggering receptor expressed on myeloid cells 2 and membrane spanning 4-domains A6A and milder changes in insulin/IGF1 signalling. The precuneus in AD was also characterised by changes in vesicle secretion and downregulation of the interneuronal subtype marker, somatostatin. The ‘early’ AD transcriptome is characterised by perturbations in synaptic vesicle secretion on a background of neuroimmune dysfunction. In particular, the synaptic deficits that characterise AD may begin with the somatostatin division of inhibitory neurotransmission.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Céline H. De Jager ◽  
Charles C. White ◽  
David A. Bennett ◽  
Yiyi Ma

AbstractAccumulating evidence has suggested that the molecular transcriptional mechanism contributes to Alzheimer’s disease (AD) and its endophenotypes of cognitive decline and neuropathological traits, β-amyloid (Aβ) and phosphorylated tangles (TAU). However, it is unknown what is the impact of the AD risk factors, personality characteristics assessed by the NEO Five-Factor Inventory, on the human brain’s transcriptome. Using postmortem human brain samples from 466 subjects, we found that neuroticism has a significant overall impact on the brain transcriptome (omnibus P = 0.005) but not the other four personality characteristics. Focused on those cognitive decline related gene co-expressed modules, neuroticism has nominally significant associations (P < 0.05) with four neuronal modules, which are more related to PHFtau than Aβ across all eight brain regions. Furthermore, the effect of neuroticism on cognitive decline and AD might be mediated through the expression of module 7 and TAU pathology (P = 0.008). To conclude, neuroticism has a broad impact on the transcriptome of human brains, and its effect on cognitive decline and AD may be mediated through gene transcription programs related to TAU pathology.


2020 ◽  
Author(s):  
Xiong Jiang ◽  
James H. Howard ◽  
G. Wiliam Rebeck ◽  
R. Scott Turner

ABSTRACTSpatial inhibition of return (IOR) refers to the phenomenon by which individuals are slower to respond to stimuli appearing at a previously cued location compared to un-cued locations. Here we provide evidence supporting that spatial IOR is mildly impaired in individuals with mild cognitive impairment (MCI) or mild Alzheimer’s disease (AD), and the impairment is readily detectable using a novel double cue paradigm. Furthermore, reduced spatial IOR in high-risk healthy older individuals is associated with reduced memory and other neurocognitive task performance, suggesting that the novel double cue spatial IOR paradigm may be useful in detecting MCI and early AD.SIGNIFICANCE STATEMENTNovel double cue spatial inhibition of return (IOR) paradigm revealed a robust effect IOR deficits in individuals with mild cognitive impairment (MCI) or mild Alzheimer’s disease (AD)Spatial IOR effect correlates with memory performance in healthy older adults at a elevated risk of Alzheimer’s disease (with a family history or APOE e4 allele)The data suggests that double cue spatial IOR may be sensitive to detect early AD pathological changes, which may be linked to disease progress at the posterior brain regions (rather than the medial temporal lobe)


2019 ◽  
Vol 130 ◽  
pp. 104509 ◽  
Author(s):  
Clarissa Ferolla Mendonça ◽  
Magdalena Kuras ◽  
Fábio César Sousa Nogueira ◽  
Indira Plá ◽  
Tibor Hortobágyi ◽  
...  

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A161-A161
Author(s):  
E Pardilla-Delgado ◽  
L Ramirez Gomez ◽  
A Y Baena ◽  
M I Montes ◽  
Y Bocanegra ◽  
...  

Abstract Introduction Alzheimer’s disease (AD) impacts brain regions that control circadian regulation systems such as wakefulness and daytime physical activity. Recent evidence shows that AD pathology is damaging for wake-promoting neurons. Whether early changes in wakefulness and daytime activity occur during asymptomatic stages of familial AD (fAD) remains unknown. In this study, we aimed to investigate whether daytime activity differs between cognitively-unimpaired carriers of early-onset fAD and age-matched non-carrier family members. Further, we examined the associations between daytime activity and memory performance. Methods A total of 25 members of the large Colombian kindred with the Presenilin1 (PSEN1) E280A mutation were included in the study (9 mutation carriers and 16 non-carriers, mean age=38.2). PSEN1 mutation carriers develop dementia before the age of 50. All subjects underwent wrist actigraphy for 7-14 days to measure daytime activity (average activity per minute and per epoch), and completed the CERAD Word List Learning and the Free and Cued Selective Reminding Test (FCSRT). Results Compared to non-carriers, mutation carriers had less average daytime activity (Mann-Whitney U Test p=.04). Higher average daytime activity was associated with better memory recall in both the CERAD word list delayed recall (r=.47, p=.05) and the FCRST delayed total recall (r=.53, p=.02). No associations with age were observed. Conclusion Our results suggest that cognitively-unimpaired mutation carriers have reduced daytime activity, years before the onset of dementia. Reduced daytime activity in carriers is also associated with lower memory performance. Our preliminary findings add to the growing evidence that circadian dysfunction is present in early AD, and may play an important role in subsequent memory impairment. Future research with large samples is needed to further examine sleep and circadian dysfunction in asymptomatic individuals at genetic risk for AD. Support NIA 5R01AG054671-03 to YTQ


NeuroImage ◽  
2011 ◽  
Vol 54 (3) ◽  
pp. 1896-1902 ◽  
Author(s):  
Winnie S. Liang ◽  
Kewei Chen ◽  
Wendy Lee ◽  
Kunal Sidhar ◽  
Jason J. Corneveaux ◽  
...  

2018 ◽  
Author(s):  
Sarah K. Kaufman ◽  
Kelly Del Tredici ◽  
Talitha L. Thomas ◽  
Heiko Braak ◽  
Marc I. Diamond

AbstractAlzheimer’s disease (AD) is characterized by accumulation of tau neurofibrillary tangles (NFTs) and, according to the prion model, transcellular propagation of pathological “seeds” may underlie its progression. Staging of NFT pathology with phospho-tau antibody is useful to classify AD and primary age-related tauopathy (PART) cases. The locus coeruleus (LC) shows the earliest phospho-tau signal, whereas other studies suggest that pathology begins in the transentorhinal/entorhinal cortices (TRE/EC). The relationship of tau seeding activity, phospho-tau pathology, and progression of neurodegeneration remains obscure. Consequently, we employed an established cellular biosensor assay to quantify tau seeding activity in fixed human tissue, in parallel with AT8 phospho-tau staining of immediately adjacent sections. We studied four brain regions from each of n=247 individuals across a range of disease stages. We detected the earliest and most robust seeding activity in the TRE/EC. The LC did not uniformly exhibit seeding activity until later NFT stages. We also detected seeding activity in the first temporal gyrus and visual cortex at stages before NFTs and/or AT8-immunopositivity were detectable. AD and putative PART cases exhibited similar patterns of seeding activity that anticipated histopathology across all NFT stages. Our findings are consistent with the prion model and suggest that pathological seeding activity begins in the TRE/EC rather than in the LC, and may offer an important addition to classical histopathology.


Cell Research ◽  
2021 ◽  
Author(s):  
Keliang Pang ◽  
Richeng Jiang ◽  
Wei Zhang ◽  
Zhengyi Yang ◽  
Lin-Lin Li ◽  
...  

AbstractA major obstacle in Alzheimer’s disease (AD) research is the lack of predictive and translatable animal models that reflect disease progression and drug efficacy. Transgenic mice overexpressing amyloid precursor protein (App) gene manifest non-physiological and ectopic expression of APP and its fragments in the brain, which is not observed in AD patients. The App knock-in mice circumvented some of these problems, but they do not exhibit tau pathology and neuronal death. We have generated a rat model, with three familiar App mutations and humanized Aβ sequence knocked into the rat App gene. Without altering the levels of full-length APP and other APP fragments, this model exhibits pathologies and disease progression resembling those in human patients: deposit of Aβ plaques in relevant brain regions, microglia activation and gliosis, progressive synaptic degeneration and AD-relevant cognitive deficits. Interestingly, we have observed tau pathology, neuronal apoptosis and necroptosis and brain atrophy, phenotypes rarely seen in other APP models. This App knock-in rat model may serve as a useful tool for AD research, identifying new drug targets and biomarkers, and testing therapeutics.


Sign in / Sign up

Export Citation Format

Share Document