scholarly journals High specificity of widely used phospho-tau antibodies validated using a quantitative whole-cell based assay

2019 ◽  
Author(s):  
Dan Li ◽  
Yong Ku Cho

AbstractAntibodies raised against defined phosphorylation sites of the microtubule-associated protein tau are widely used in scientific research and being applied in clinical assays. However, recent studies have revealed an alarming degree of non-specific binding found in these antibodies. In order to quantify and compare the specificity phospho-tau antibodies and other post-translational modification site-specific antibodies in general, a measure of specificity is urgently needed. Here we report a robust flow cytometry assay using human embryonic kidney (HEK) cells that enables the determination of a specificity parameter termed Φ, which measures the fraction of non-specific signal in antibody binding. We validate our assay using anti-tau antibodies with known specificity profiles, and apply it to measure the specificity of 7 widely used phospho-tau antibodies (AT270, AT8, AT100, AT180, PHF-6, TG-3, and PHF-1) among others. We successfully determined the Φ values for all antibodies except AT100, which did not show detectable binding in our assay. Our results show that antibodies AT8, AT180, PHF-6, TG-3, and PHF-1 have Φ values near 1, which indicates no detectable non-specific binding. AT270 showed Φ value around 0.8, meaning that approximately 20% of the binding signal originates from non-specific binding. Further analyses using immunocytochemistry and western blotting confirmed the presence of non-specific binding of AT270 to non-tau proteins found in HEK cells and the mouse hippocampus. We anticipate that the quantitative approach and parameter introduced here will be widely adopted as a standard for reporting the specificity for phospho-tau antibodies, and potentially for post-translational modification targeting antibodies in general.

Author(s):  
Samad Beheshtirouy ◽  
Farhad Mirzaei ◽  
Shirin Eyvazi ◽  
Vahideh Tarhriz

: Breast cancer is a heterogeneous malignancy which is the second cause of mortality among women in the world. Increasing the resistance to anti-cancer drugs in breast cancer cells persuades researchers to search the novel therapies approaches for the treatment of the malignancy. Among the novel methods, therapeutic peptides which target and disrupt tumor cells have been of great interest. Therapeutic peptides are short amino acids monomer chains with high specificity to bind and modulate a protein interaction of interest. Several advantages of peptides such as specific binding on tumor cells surface, low molecular weight and low toxicity on normal cells make the peptides as an appealing therapeutic agents against solid tumors, particularly breast cancer. Also, National Institutes of Health (NIH) describes therapeutic peptides as suitable candidate for the treatment of drug-resistant breast cancer. In this review, we attempt to review the different therapeutic peptides against breast cancer cells which can be used in treatment and diagnosis of the malignancy. Meanwhile, we presented an overview of peptide vaccines which have been developed for the treatment of breast cancer.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1393
Author(s):  
Thanyaporn Dechtawewat ◽  
Sittiruk Roytrakul ◽  
Yodying Yingchutrakul ◽  
Sawanya Charoenlappanit ◽  
Bunpote Siridechadilok ◽  
...  

Dengue virus (DENV) infection causes a spectrum of dengue diseases that have unclear underlying mechanisms. Nonstructural protein 1 (NS1) is a multifunctional protein of DENV that is involved in DENV infection and dengue pathogenesis. This study investigated the potential post-translational modification of DENV NS1 by phosphorylation following DENV infection. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), 24 potential phosphorylation sites were identified in both cell-associated and extracellular NS1 proteins from three different cell lines infected with DENV. Cell-free kinase assays also demonstrated kinase activity in purified preparations of DENV NS1 proteins. Further studies were conducted to determine the roles of specific phosphorylation sites on NS1 proteins by site-directed mutagenesis with alanine substitution. The T27A and Y32A mutations had a deleterious effect on DENV infectivity. The T29A, T230A, and S233A mutations significantly decreased the production of infectious DENV but did not affect relative levels of intracellular DENV NS1 expression or NS1 secretion. Only the T230A mutation led to a significant reduction of detectable DENV NS1 dimers in virus-infected cells; however, none of the mutations interfered with DENV NS1 oligomeric formation. These findings highlight the importance of DENV NS1 phosphorylation that may pave the way for future target-specific antiviral drug design.


2021 ◽  
Vol 22 (1) ◽  
pp. 397
Author(s):  
Nasir Javaid ◽  
Thuong L. H. Pham ◽  
Sangdun Choi

Reversal in the transcriptional status of desired genes has been exploited for multiple research, therapeutic, and biotechnological purposes. CRISPR/dCas9-based activators can activate transcriptionally silenced genes after being guided by gene-specific gRNA(s). Here, we performed a functional comparison between two such activators, VP64-dCas9-VP64 and dCas9-VP192, in human embryonic kidney cells by the concomitant targeting of POU5F1 and SOX2. We found 22- and 6-fold upregulations in the mRNA level of POU5F1 by dCas9-VP192 and VP64-dCas9-VP64, respectively. Likewise, SOX2 was up-regulated 4- and 2-fold using dCas9-VP192 and VP64dCas9VP64, respectively. For the POU5F1 protein level, we observed 3.7- and 2.2-fold increases with dCas9-VP192 and VP64-dCas9-VP64, respectively. Similarly, the SOX2 expression was 2.4- and 2-fold higher with dCas9-VP192 and VP64-dCas9-VP64, respectively. We also confirmed that activation only happened upon co-transfecting an activator plasmid with multiplex gRNA plasmid with a high specificity to the reference genes. Our data revealed that dCas9-VP192 is more efficient than VP64-dCas9-VP64 for activating reference genes.


2021 ◽  
Vol 11 (11) ◽  
pp. 1774-1780
Author(s):  
Shanji Fan ◽  
Hong Huang ◽  
Hong Chen ◽  
Jiachi Xu ◽  
Zecheng Hu ◽  
...  

A CdS nanocrystal enhanced TiO2 nanotubes (CdS@TiO2 NATs) photoelectrode was prepared via successive ionic layer adsorption and reaction (SILAR) of CdS on the surface of TiO2 NATs. A HS-aptamer owing a specific binding toward cytochrome c was modified onto the CdS@TiO2 NATs, which resulting a decrease in the photoelectrical current intensity. Cytochrome c is therefore quantified based on the decrease in photoelectrical current. High specificity and high sensitivity were obtained with a linear range from 3 pM to 80 nM, and a limit of detection of 2.53 pM.


Author(s):  
Lok Man ◽  
William P. Klare ◽  
Ashleigh L. Dale ◽  
Joel A. Cain ◽  
Stuart J. Cordwell

Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.


2001 ◽  
Vol 13 (2) ◽  
pp. 149-156 ◽  
Author(s):  
Kevin M. Dennehy ◽  
William F. Ferris ◽  
Hanne Veenstra ◽  
Linda A. Zuckerman ◽  
Nigel Killeen ◽  
...  

1988 ◽  
Vol 104 (6) ◽  
pp. 946-951 ◽  
Author(s):  
Shigeo Nakajo ◽  
Yutaka Masuda ◽  
Kazuyasu Nakaya ◽  
Yasuharu Nakamura

2018 ◽  
Vol 21 (2) ◽  
pp. 595-608 ◽  
Author(s):  
Man Cao ◽  
Guodong Chen ◽  
Jialin Yu ◽  
Shaoping Shi

Abstract Protein phosphorylation is a reversible and ubiquitous post-translational modification that primarily occurs at serine, threonine and tyrosine residues and regulates a variety of biological processes. In this paper, we first briefly summarized the current progresses in computational prediction of eukaryotic protein phosphorylation sites, which mainly focused on animals and plants, especially on human, with a less extent on fungi. Since the number of identified fungi phosphorylation sites has greatly increased in a wide variety of organisms and their roles in pathological physiology still remain largely unknown, more attention has been paid on the identification of fungi-specific phosphorylation. Here, experimental fungi phosphorylation sites data were collected and most of the sites were classified into different types to be encoded with various features and trained via a two-step feature optimization method. A novel method for prediction of species-specific fungi phosphorylation-PreSSFP was developed, which can identify fungi phosphorylation in seven species for specific serine, threonine and tyrosine residues (http://computbiol.ncu.edu.cn/PreSSFP). Meanwhile, we critically evaluated the performance of PreSSFP and compared it with other existing tools. The satisfying results showed that PreSSFP is a robust predictor. Feature analyses exhibited that there have some significant differences among seven species. The species-specific prediction via two-step feature optimization method to mine important features for training could considerably improve the prediction performance. We anticipate that our study provides a new lead for future computational analysis of fungi phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document