scholarly journals Why did the Tc1-like elements of mollusks acquired the spliceosomal introns?

2019 ◽  
Author(s):  
M.V. Puzakov ◽  
L.V. Puzakova ◽  
S.V. Cheresiz

AbstractTransposable elements are the DNA sequences capable of transpositions within the genome and, thus, exerting a considerable influence on the genome functioning and structure and providing the source of new genes. Transposable elements are classified into retrotransposons and the DNA transposons. IS630/Tc1/mariner superfamily of DNA transposons is one of the most diverse groups broadly represented among the eukaryotes. We identified a new group of Tc1-like elements in the mollusks, which we named TLEWI. These DNA transposons are characterized by the low copy number, the lack of terminal inverted repeats and the presence of DD36E signature and the spliceosomal introns in transposase sequence. Their prevalence among the mollusks is limited to subclass Pteriomorpha (Bivalvia). Since TLEWI possess the features of domesticated TE and the structure similar to the eukaryotic genes, which is not typical for the DNA transposons, we consider the hypothesis of co-optation of TLEWI gene by the bivalves.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ann A. Ferguson ◽  
Ning Jiang

Mutator-like transposable elements (MULEs) are widespread in plants and the majority have long terminal inverted repeats (TIRs), which distinguish them from other DNA transposons. It is known that the long TIRs ofMutatorelements harbor transposase binding sites and promoters for transcription, indicating that the TIR sequence is critical for transposition and for expression of sequences between the TIRs. Here, we report the presence of MULEs with multiple TIRs mostly located in tandem. These elements are detected in the genomes of maize, tomato, rice, andArabidopsis. Some of these elements are present in multiple copies, suggesting their mobility. For those elements that have amplified, sequence conservation was observed for both of the tandem TIRs. For one MULE family carrying a gene fragment, the elements with tandem TIRs are more prevalent than their counterparts with a single TIR. The successful amplification of this particular MULE demonstrates that MULEs with tandem TIRs are functional in both transposition and duplication of gene sequences.


2017 ◽  
Author(s):  
Lu Zeng ◽  
R. Daniel Kortschak ◽  
Joy M. Raison ◽  
Terry Bertozzi ◽  
David L. Adelson

AbstractTransposable Elements (TEs) are mobile DNA sequences that make up significant fractions of amniote genomes. However, they are difficult to detect and annotate ab initio because of their variable features, lengths and clade-specific variants. We have addressed this problem by refining and developing a Comprehensive ab initio Repeat Pipeline (CARP) to identify and cluster TEs and other repetitive sequences in genome assemblies. The pipeline begins with a pairwise alignment using krishna, a custom aligner. Single linkage clustering is then carried out to produce families of repetitive elements. Consensus sequences are then filtered for protein coding genes and then annotated using Repbase and a custom library of retrovirus and reverse transcriptase sequences. This process yields three types of family: fully annotated, partially annotated and unannotated. Fully annotated families reflect recently diverged/young known TEs present in Repbase. The remaining two types of families contain a mixture of novel TEs and segmental duplications. These can be resolved by aligning these consensus sequences back to the genome to assess copy number vs. length distribution. Our pipeline has three significant advantages compared to other methods for ab initio repeat identification: 1) we generate not only consensus sequences, but keep the genomic intervals for the original aligned sequences, allowing straightforward analysis of evolutionary dynamics, 2) consensus sequences represent low-divergence, recently/currently active TE families, 3) segmental duplications are annotated as a useful by-product. We have compared our ab initio repeat annotations for 7 genome assemblies (1 unpublished) to other methods and demonstrate that CARP compares favourably with RepeatModeler, the most widely used repeat annotation package.Author summaryTransposable elements (TEs) are interspersed repetitive DNA sequences, also known as ‘jumping genes’, because of their ability to replicate in to new genomic locations. TEs account for a significant proportion of all eukaryotic genomes. Previous studies have found that TE insertions have contributed to new genes, coding sequences and regulatory regions. They also play an important role in genome evolution. Therefore, we developed a novel, ab initio approach for identifying and annotating repetitive elements. The idea is simple: define a “repeat” as any sequence that occurs at least twice in the genome. Our ab initio method is able to identify species-specific TEs with high sensitivity and accuracy including both TEs and segmental duplications. Because of the high degree of sequence identity used in our method, the TEs we find are less diverged and may still be active. We also retain all the information that links identified repeat consensus sequences to their genome intervals, permiting direct evolutionary analysis of the TE families we identify.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Domitille Chalopin ◽  
Delphine Galiana ◽  
Jean-Nicolas Volff

Due to their ability to drive DNA rearrangements and to serve as a source of new coding and regulatory sequences, transposable elements (TEs) are considered as powerful evolutionary agents within genomes. In this paper, we review the mechanism of molecular domestication, which corresponds to the formation of new genes derived from TE sequences. Many genes derived from retroelements and DNA transposons have been identified in mammals and other vertebrates, some of them fulfilling essential functions for the development and survival of their host organisms. We will particularly focus on the evolution and expression of Gypsy integrase (GIN) genes, which have been formed from ancient event(s) of molecular domestication and have evolved differentially in some vertebrate sublineages. What we describe here is probably only the tip of the evolutionary iceberg, and future genome analyses will certainly uncover new TE-derived genes and biological functions driving genetic innovation in vertebrates and other organisms.


2019 ◽  
Author(s):  
Logan J. Everett ◽  
Wen Huang ◽  
Shanshan Zhou ◽  
Mary Anna Carbone ◽  
Richard F. Lyman ◽  
...  

SummaryA major challenge in modern biology is to understand how naturally occurring variation in DNA sequences affects complex organismal traits through networks of intermediate molecular phenotypes. Here, we performed deep RNA sequencing of 200 Drosophila Genetic Reference Panel inbred lines with complete genome sequences, and mapped expression quantitative trait loci for annotated genes, novel transcribed regions (most of which are long noncoding RNAs), transposable elements and microbial species. We identified host variants that affect expression of transposable elements, independent of their copy number, as well as microbiome composition. We constructed sex-specific expression quantitative trait locus regulatory networks. These networks are enriched for novel transcribed regions and target genes in heterochromatin and euchromatic regions of reduced recombination, and genes regulating transposable element expression. This study provides new insights regarding the role of natural genetic variation in regulating gene expression and generates testable hypotheses for future functional analyses.


2012 ◽  
Vol 10 (4) ◽  
pp. 3-13
Author(s):  

The paper describes the early part of Barbara McClintock`s work on DNA transposons in maize, in which she discovered the Ac-Ds family of mobile "controlling elements". An account is first given of the cytology of the system that was used to generate intact chromosomes having "sticky" (broken) ends. Cytogenetical aspects of the chromatid and chromosome breakage-fusion-bridge cycles, deriving from breakage, are then described, which leads on to the way in which variegation in phenotypes of the maize kernels could be "read" in terms of chromosome breakage. The "genetic earthquake" event of 1944, triggered by introducing broken chromosomes into a zygote from both parents, lead to the discovery of Ds and Ac. Finding mobility of Ds from one chromosomal location to another was pure serendipity: the transposition showed itself while experiments were being undertaken to accurately map Ds. A similar chance observation revealed transposition of Ac as well, and then the relationship between the two elements was elucidated in terms of their autonomous and non-autonomous nature.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1089 ◽  
Author(s):  
Rocio Enriquez-Gasca ◽  
Poppy A. Gould ◽  
Helen M. Rowe

The human genome has been under selective pressure to evolve in response to emerging pathogens and other environmental challenges. Genome evolution includes the acquisition of new genes or new isoforms of genes and changes to gene expression patterns. One source of genome innovation is from transposable elements (TEs), which carry their own promoters, enhancers and open reading frames and can act as ‘controlling elements’ for our own genes. TEs include LINE-1 elements, which can retrotranspose intracellularly and endogenous retroviruses (ERVs) that represent remnants of past retroviral germline infections. Although once pathogens, ERVs also represent an enticing source of incoming genetic material that the host can then repurpose. ERVs and other TEs have coevolved with host genes for millions of years, which has allowed them to become embedded within essential gene expression programmes. Intriguingly, these host genes are often subject to the same epigenetic control mechanisms that evolved to combat the TEs that now regulate them. Here, we illustrate the breadth of host gene regulation through TEs by focusing on examples of young (The New), ancient (The Old), and disease-causing (The Ugly) TE integrants.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Rui Zhang ◽  
Fangfang Ge ◽  
Huayang Li ◽  
Yudong Chen ◽  
Ying Zhao ◽  
...  

Abstract Inverted repeats (IRs) serve as potential biomarkers for genomic instability, DNA replication and other genetic processes. However, little information can be found in databases to help researchers recognize potential IR nucleotides, explore junction sites and annotate related functional genes. Plant Chloroplast Inverted Repeats (PCIR) is an interactive, web-based platform containing various sequenced chloroplast genomes that enables detection, searching and visualization of large-scale detailed information on IRs. PCIR contains many datasets, including 21 433 IRs, 113 plants chloroplast genomes, 16 948 functional genes and 21 659 visual maps. This database offers an online prediction tool for detecting IRs based on DNA sequences. PCIR can also analyze phylogenetic relationships using IR information among different species and provide users with high-quality marker maps. This database will be a valuable resource for IR distribution patterns, related genes and architectural features.


2002 ◽  
Vol 68 (5) ◽  
pp. 2307-2315 ◽  
Author(s):  
Masahiro Sota ◽  
Masahiro Endo ◽  
Keiji Nitta ◽  
Haruhiko Kawasaki ◽  
Masataka Tsuda

ABSTRACT The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.


2008 ◽  
Vol 90 (4) ◽  
pp. 317-329 ◽  
Author(s):  
ELIE S. DOLGIN ◽  
BRIAN CHARLESWORTH ◽  
ASHER D. CUTTER

SummaryPopulation genetics theory predicts that differences in breeding systems should be an important factor in the dynamics of selfish genetic elements, because of different intensities of selection on both hosts and elements. We examined population frequencies of transposable elements (TEs) in natural populations of the self-fertilizing nematodeCaenorhabditis elegansand its outcrossing relativeCaenorhabditis remanei. We identified a Tc1-like class of elements in theC. remaneigenome with homology to the terminal inverted repeats of theC. elegansTc1 transposon, which we name mTcre1. We measured levels of insertion polymorphism for all 32 Tc1 elements present in the genome sequence of theC. elegansN2 strain, and 16 mTcre1 elements from the genome sequence of theC. remaneiPB4641 strain. We show that transposons are less polymorphic and segregate at higher frequencies inC. eleganscompared withC. remanei. Estimates of the intensity of selection based on the population frequencies of polymorphic elements suggest that transposons are selectively neutral inC. elegans, but subject to purifying selection inC. remanei. These results are consistent with a reduced efficacy of natural selection against TEs in selfing populations, but may in part be explained by non-equilibrium TE dynamics.


Sign in / Sign up

Export Citation Format

Share Document