scholarly journals Caenorhabditis elegans Exhibits Positive Gravitaxis

2019 ◽  
Author(s):  
Wei-Long Chen ◽  
Hungtang Ko ◽  
Han-Sheng Chuang ◽  
Haim H. Bau ◽  
David Raizen

AbstractWhether or not the micro swimmer Caenorhabditis elegans senses and respond to gravity is unknown. We find that C. elegans aligns its swimming direction with that of the gravity vector (positive gravitaxis). When placed in an aqueous solution that is denser than the animals, they still orient downwards, indicating that non-uniform mass distribution and/or hydrodynamic effects are not responsible for animal’s downward orientation. Paralyzed worms and worms with globally disrupted sensory cilia do not change orientation as they settle in solution, indicating that gravitaxis is an active behavior that requires gravisensation. Other types of sensory driven orientation behaviors cannot explain our observed downward orientation. Like other neural behaviors, the ability to respond to gravity declines with age. Our study establishes gravitaxis in the micro swimmer C. elegans and suggests that C. elegans can be used as a genetically tractable system to study molecular and neural mechanisms of gravity sensing and orientation.Significance StatementUnderstanding how animals respond to gravity is not only of fundamental scientific interest, but has clinical relevance, given the prevalence of postural instability in aged individuals. Determining whether C. elegans responds to gravity is important for mechanistic studies of gravity sensing in an experimentally tractable animal, for a better understanding of nematode ecology and evolution, and for studying biological effects of microgravity. Our experiments, which indicate that C. elegans senses and responds to gravity, set the stage for mechanistic studies on molecular mechanisms of gravity sensing.

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Wei-Long Chen ◽  
Hungtang Ko ◽  
Han-Sheng Chuang ◽  
David M. Raizen ◽  
Haim H. Bau

Abstract Background Gravity plays an important role in most life forms on Earth. Yet, a complete molecular understanding of sensing and responding to gravity is lacking. While there are anatomical differences among animals, there is a remarkable conservation across phylogeny at the molecular level. Caenorhabditis elegans is suitable for gene discovery approaches that may help identify molecular mechanisms of gravity sensing. It is unknown whether C. elegans can sense the direction of gravity. Results In aqueous solutions, motile C. elegans nematodes align their swimming direction with the gravity vector direction while immobile worms do not. The worms orient downward regardless of whether they are suspended in a solution less dense (downward sedimentation) or denser (upward sedimentation) than themselves. Gravitaxis is minimally affected by the animals’ gait but requires sensory cilia and dopamine neurotransmission, as well as motility; it does not require genes that function in the body touch response. Conclusions Gravitaxis is not mediated by passive forces such as non-uniform mass distribution or hydrodynamic effects. Rather, it is mediated by active neural processes that involve sensory cilia and dopamine. C. elegans provides a genetically tractable system to study molecular and neural mechanisms of gravity sensing.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 438
Author(s):  
María Alejandra Guerrero-Rubio ◽  
Samanta Hernández-García ◽  
Francisco García-Carmona ◽  
Fernando Gandía-Herrero

Flavonoids are potential nutraceutical compounds present in diary food. They are considered health-promoting compounds and promising drugs for different diseases, such as neurological and inflammatory diseases, diabetes and cancer. Therefore, toxicological and mechanistic studies should be done to assert the biological effects and identify the molecular targets of these compounds. In this work we describe the effects of six structurally-related flavonoids—baicalein, chrysin, scutellarein, 6-hydroxyflavone, 6,7-dihydroxyflavone and 7,8-dihydroxyflavone—on Caenorhabditis elegans’ lifespan and stress resistance. The results showed that chrysin, 6-hydroxyflavone and baicalein prolonged C. elegans’ lifespan by up to 8.5%, 11.8% and 18.6%, respectively. The lifespan extensions caused by these flavonoids are dependent on different signaling pathways. The results suggested that chrysin’s effects are dependent on the insulin signaling pathway via DAF-16/FOXO. Baicalein and 6-hydroxyflavone’s effects are dependent on the SKN-1/Nfr2 pathway. In addition, microarray analysis showed that baicalein downregulates important age-related genes, such as mTOR and PARP.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 585 ◽  
Author(s):  
Begoña Ayuda-Durán ◽  
Susana González-Manzano ◽  
Antonio Miranda-Vizuete ◽  
Eva Sánchez-Hernández ◽  
Marta R. Romero ◽  
...  

Quercetin is one the most abundant flavonoids in the human diet. Although it is well known that quercetin exhibits a range of biological activities, the mechanisms behind these activities remain unresolved. The aim of this work is to progress in the knowledge of the molecular mechanisms involved in the biological effects of quercetin using Caenorhabditis elegans as a model organism. With this aim, the nematode has been used to explore the ability of this flavonoid to modulate the insulin/insulin-like growth factor 1(IGF-1) signaling pathway (IIS) and the expression of some genes related to stress response. Different methodological approaches have been used, i.e., assays in knockout mutant worms, gene expression assessment by RT-qPCR, and C. elegans transgenic strains expressing green fluorescent protein (GFP) reporters. The results showed that the improvement of the oxidative stress resistance of C. elegans induced by quercetin could be explained, at least in part, by the modulation of the insulin signaling pathway, involving genes age-1, akt-1, akt-2, daf-18, sgk-1, daf-2, and skn-1. However, this effect could be independent of the transcription factors DAF-16 and HSF-1 that regulate this pathway. Moreover, quercetin was also able to increase expression of hsp-16.2 in aged worms. This observation could be of particular interest to explain the effects of enhanced lifespan and greater resistance to stress induced by quercetin in C. elegans, since the expression of many heat shock proteins diminishes in aging worms.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


2005 ◽  
Vol 126 (4) ◽  
pp. 379-392 ◽  
Author(s):  
Maria V. Espelt ◽  
Ana Y. Estevez ◽  
Xiaoyan Yin ◽  
Kevin Strange

Defecation in the nematode Caenorhabditis elegans is a readily observable ultradian behavioral rhythm that occurs once every 45–50 s and is mediated in part by posterior body wall muscle contraction (pBoc). pBoc is not regulated by neural input but instead is likely controlled by rhythmic Ca2+ oscillations in the intestinal epithelium. We developed an isolated nematode intestine preparation that allows combined physiological, genetic, and molecular characterization of oscillatory Ca2+ signaling. Isolated intestines loaded with fluo-4 AM exhibit spontaneous rhythmic Ca2+ oscillations with a period of ∼50 s. Oscillations were only detected in the apical cell pole of the intestinal epithelium and occur as a posterior-to-anterior moving intercellular Ca2+ wave. Loss-of-function mutations in the inositol-1,4,5-trisphosphate (IP3) receptor ITR-1 reduce pBoc and Ca2+ oscillation frequency and intercellular Ca2+ wave velocity. In contrast, gain-of-function mutations in the IP3 binding and regulatory domains of ITR-1 have no effect on pBoc or Ca2+ oscillation frequency but dramatically increase the speed of the intercellular Ca2+ wave. Systemic RNA interference (RNAi) screening of the six C. elegans phospholipase C (PLC)–encoding genes demonstrated that pBoc and Ca2+ oscillations require the combined function of PLC-γ and PLC-β homologues. Disruption of PLC-γ and PLC-β activity by mutation or RNAi induced arrhythmia in pBoc and intestinal Ca2+ oscillations. The function of the two enzymes is additive. Epistasis analysis suggests that PLC-γ functions primarily to generate IP3 that controls ITR-1 activity. In contrast, IP3 generated by PLC-β appears to play little or no direct role in ITR-1 regulation. PLC-β may function instead to control PIP2 levels and/or G protein signaling events. Our findings provide new insights into intestinal cell Ca2+ signaling mechanisms and establish C. elegans as a powerful model system for defining the gene networks and molecular mechanisms that underlie the generation and regulation of Ca2+ oscillations and intercellular Ca2+ waves in nonexcitable cells.


2005 ◽  
Vol 25 (12) ◽  
pp. 5158-5170 ◽  
Author(s):  
Yieyie Yang ◽  
Erik A. Lundquist

ABSTRACT The roles of actin-binding proteins in development and morphogenesis are not well understood. The actin-binding protein UNC-115 has been implicated in cytoskeletal signaling downstream of Rac in Caenorhabditis elegans axon pathfinding, but the cellular role of UNC-115 in this process remains undefined. Here we report that UNC-115 overactivity in C. elegans neurons promotes the formation of neurites and lamellipodial and filopodial extensions similar to those induced by activated Rac and normally found in C. elegans growth cones. We show that UNC-115 activity in neuronal morphogenesis is enhanced by two molecular mechanisms: when ectopically driven to the plasma membrane by the myristoylation sequence of c-Src, and by mutation of a putative serine phosphorylation site in the actin-binding domain of UNC-115. In support of the hypothesis that UNC-115 modulates actin cytoskeletal organization, we show that UNC-115 activity in serum-starved NIH 3T3 fibroblasts results in the formation of lamellipodia and filopodia. We conclude that UNC-115 is a novel regulator of the formation of lamellipodia and filopodia in neurons, possibly in the growth cone during axon pathfinding.


2016 ◽  
Vol 371 (1710) ◽  
pp. 20150407 ◽  
Author(s):  
Amel Alqadah ◽  
Yi-Wen Hsieh ◽  
Rui Xiong ◽  
Chiou-Fen Chuang

Left–right asymmetry in the nervous system is observed across species. Defects in left–right cerebral asymmetry are linked to several neurological diseases, but the molecular mechanisms underlying brain asymmetry in vertebrates are still not very well understood. The Caenorhabditis elegans left and right amphid wing ‘C’ (AWC) olfactory neurons communicate through intercellular calcium signalling in a transient embryonic gap junction neural network to specify two asymmetric subtypes, AWC OFF (default) and AWC ON (induced), in a stochastic manner. Here, we highlight the molecular mechanisms that establish and maintain stochastic AWC asymmetry. As the components of the AWC asymmetry pathway are highly conserved, insights from the model organism C. elegans may provide a window onto how brain asymmetry develops in humans. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’.


2003 ◽  
Vol 14 (7) ◽  
pp. 2972-2983 ◽  
Author(s):  
Lisa Timmons ◽  
Hiroaki Tabara ◽  
Craig C. Mello ◽  
Andrew Z. Fire

Introduction of double-stranded RNA (dsRNA) can elicit a gene-specific RNA interference response in a variety of organisms and cell types. In many cases, this response has a systemic character in that silencing of gene expression is observed in cells distal from the site of dsRNA delivery. The molecular mechanisms underlying the mobile nature of RNA silencing are unknown. For example, although cellular entry of dsRNA is possible, cellular exit of dsRNA from normal animal cells has not been directly observed. We provide evidence that transgenic strains of Caenorhabditis elegans transcribing dsRNA from a tissue-specific promoter do not exhibit comprehensive systemic RNA interference phenotypes. In these same animals, modifications of environmental conditions can result in more robust systemic RNA silencing. Additionally, we find that genetic mutations can influence the systemic character of RNA silencing in C. elegans and can separate mechanisms underlying systemic RNA silencing into tissue-specific components. These data suggest that trafficking of RNA silencing signals in C. elegans is regulated by specific physiological and genetic factors.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S97-S97
Author(s):  
Amin Haghani ◽  
Hans M Dalton ◽  
Nikoo Safi ◽  
Farimah Shirmohammadi ◽  
Constantinos Sioutas ◽  
...  

Abstract Air pollution (AirPoll) is among the leading human mortality risk factors and yet little is known about the molecular mechanisms of this global environmental toxin. Our recent studies using mouse models even showed genetic variation and sex can alter biological responses to air pollution. To expand genetic studies of AirPoll toxicity throughout the lifespan, we introduced Caenorhabditis elegans as a new AirPoll exposure model which has a short lifespan, high throughput capabilities and shared longevity pathways with mammals. Acute exposure of C. elegans to airborne nanosized AirPoll matter (nPM) caused similar gene expression changes to our prior findings in cell culture and mouse models. Initial C. elegans responses to nPM included antioxidant, inflammatory and Alzheimer homolog genes. The magnitude of changes was dependent on the developmental stage of the worms. Even short term exposure of C. elegans to nPM altered developmental and lifespan hormetic effects, with pathways that included skn-1/Nrf family antioxidant responses. We propose C. elegans as a new and complementary model for mouse and cultured cells to study AirPoll across the lifespan. Future chronic nPM exposure and high throughput genetic screening of C. elegans can identify other major regulators of the developmental and lifespan effects of air pollution. This work was supported by grants R01AG051521 (CEF); R21AG05020 (CEF); Cure Alzheimer’s Fund (CEF); R01GM109028 (SPC), F31AG051382 (HMD) and T32AG000037 (HMD), T32AG052374 (AH).


2020 ◽  
Vol 123 (5) ◽  
pp. 2064-2074 ◽  
Author(s):  
Christina K. Johnson ◽  
Jesus Fernandez-Abascal ◽  
Ying Wang ◽  
Lei Wang ◽  
Laura Bianchi

Increasing evidences support that accessory cells in mechanosensors regulate neuronal output; however, the glial molecular mechanisms that control this regulation are not fully understood. We show here in Caenorhabditis elegans that specific glial Na+-K+-ATPase genes are needed for nose touch-avoidance behavior. Our data support the requirement of these Na+-K+-ATPases for homeostasis of Na+ and K+ in nose touch receptors. Our data add to our understanding of glial regulation of mechanosensors.


Sign in / Sign up

Export Citation Format

Share Document