scholarly journals Incorporating Randomness into DNA Steganography to Realize Secondary Secret key, Self-destruction, and Quantum Key Distribution-like Function

2019 ◽  
Author(s):  
Meiying Cui ◽  
Yixin Zhang

AbstractDNA has become a promising candidate as future data storage medium, which makes DNA steganography indispensable in DNA data security. While PCR primers are conventional secret keys in DNA steganography, the information can be read once the primers are intercepted. New steganography approach is needed to make the DNA-encoded information safer, if not unhackable. Herein, by mixing information-carrying DNA with partially degenerated DNA library containing single or multiple restriction sites, we build an additional protective layer, which can be removed by desired restriction enzymes as secondary secret keys. As PCR is inevitable for reading DNA-encrypted information, heating will cause reshuffling and generate endonuclease-resistant mismatched duplexes, especially for DNA with high sequence diversity. Consequently, with the incorporation of randomness, the DNA steganography possesses both quantum key distribution (QKD)-like function for detecting PCR by an interceptor and self-destructive property. With a DNA-ink incorporating the steganography, the authenticity of a writing can be confirmed only by authorized person with the knowledge of all embedded keys.

2019 ◽  
Vol 34 (34) ◽  
pp. 1950281 ◽  
Author(s):  
Chia-Wei Tsai ◽  
Chun-Wei Yang ◽  
Narn-Yih Lee

Classical users can share a secret key with a quantum user by using a semi-quantum key distribution (SQKD) protocol. Allowing two classical users to share a secret key is the objective of the mediated semi-quantum key distribution (MSQKD) protocol. However, the existing MSQKD protocols need a quantum user to assist two classical users in distributing the secret keys, and these protocols require that the classical users be equipped with a Trojan horse photon detector. This reduces the practicability of the MSQKD protocols. Therefore, in this study we propose a lightweight MSQKD, in which the two participants and third party are classical users. Due to the usage of the one-way transmission strategy, the proposed lightweight MSQKD protocol is free from quantum Trojan horse attack. The proposed MSQKD is more practical than the existing MSQKD protocols.


2021 ◽  
Author(s):  
Qiang Zhang ◽  
Wen-Zhao Liu ◽  
Yu-Zhe Zhang ◽  
Yi-Zheng Zhen ◽  
Ming-Han Li ◽  
...  

Abstract The security of quantum key distribution (QKD) usually relies on that the users’s devices are well characterized according to the security models made in the security proofs. In contrast,device-independent QKD an entanglement-based protocol permits the security even without any knowledge of the underlying devices. Despite its beauty in theory, device-independent QKD is elusive to realize with current technology. This is because a faithful realization requires ahigh-quality violation of Bell inequality without the fair-sampling assumption. Particularly, in a photonic realization, a rather high detection efficiency is needed where the threshold values depend on the security proofs; this efficiency is far beyond the current reach. Here, both theoretical and experimental innovations yield the realization of device-independent QKD based on a photonic setup. On the theory side, to relax the threshold efficiency for practical deviceindependent QKD, we exploit the random post-selection combined with adding noise for preprocessing, and compute the entropy with complete nonlocal correlations. On the experiment side, we develop a high-quality polarization-entangled photonic source and achieve state-of-theart (heralded) detection efficiency of 87.49%, which outperforms previous experiments and satisfies the threshold efficiency for the first time. Together, we demonstrate device-independent QKD at a secret key rate of 466 bits/s over 20 m standard fiber in the asymptotic limit against collective attacks. Besides, we show the feasibility of generating secret keys at a fiber length of 220 meters. Importantly, our photonic implementation can generate entangled photons at a high rate and in the telecom wavelength, which is desirable for high-speed key generation over long distances. The results not only prove the feasibility of device-independent QKD with realistic devices, but also push the security of communication to an unprecedented level.


2005 ◽  
Vol 5 (7) ◽  
pp. 551-560
Author(s):  
D. R. Kuhn

This paper presents a server-based hybrid cryptographic protocol, using quantum and classical resources, to generate a key for authentication and optionally for encryption in a network. A novel feature of the protocol is that it can detect a compromised server. Additional advantages are that it avoids the requirement for timestamps used in classical protocols, guarantees that the trusted server cannot know the authentication key, can provide resistance to multiple photon attacks, and can be used with BB84 or other quantum key distribution protocols. Each resource shares a previously distributed secret key with the trusted server, and resources can communicate with the server using both classical and quantum channels. Resources do not share secret keys with each other, so that the key distribution problem for the network is reduced from O(n^2) to O(n).


Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1275
Author(s):  
Masakazu Yoshida ◽  
Ayumu Nakayama ◽  
Jun Cheng

We introduce a quantum key distribution protocol using mean multi-kings’ problem. Using this protocol, a sender can share a bit sequence as a secret key with receivers. We consider a relation between information gain by an eavesdropper and disturbance contained in legitimate users’ information. In BB84 protocol, such relation is known as the so-called information disturbance theorem. We focus on a setting that the sender and two receivers try to share bit sequences and the eavesdropper tries to extract information by interacting legitimate users’ systems and an ancilla system. We derive trade-off inequalities between distinguishability of quantum states corresponding to the bit sequence for the eavesdropper and error probability of the bit sequence shared with the legitimate users. Our inequalities show that eavesdropper’s extracting information regarding the secret keys inevitably induces disturbing the states and increasing the error probability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
René Schwonnek ◽  
Koon Tong Goh ◽  
Ignatius W. Primaatmaja ◽  
Ernest Y.-Z. Tan ◽  
Ramona Wolf ◽  
...  

AbstractDevice-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today’s loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 108–1010 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 950
Author(s):  
Ziwen Pan ◽  
Ivan B. Djordjevic

Traditionally, the study of quantum key distribution (QKD) assumes an omnipotent eavesdropper that is only limited by the laws of physics. However, this is not the case for specific application scenarios such as the QKD over a free-space link. In this invited paper, we introduce the geometrical optics restricted eavesdropping model for secret key distillation security analysis and apply to a few scenarios common in satellite-to-satellite applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kadir Gümüş ◽  
Tobias A. Eriksson ◽  
Masahiro Takeoka ◽  
Mikio Fujiwara ◽  
Masahide Sasaki ◽  
...  

AbstractReconciliation is a key element of continuous-variable quantum key distribution (CV-QKD) protocols, affecting both the complexity and performance of the entire system. During the reconciliation protocol, error correction is typically performed using low-density parity-check (LDPC) codes with a single decoding attempt. In this paper, we propose a modification to a conventional reconciliation protocol used in four-state protocol CV-QKD systems called the multiple decoding attempts (MDA) protocol. MDA uses multiple decoding attempts with LDPC codes, each attempt having fewer decoding iteration than the conventional protocol. Between each decoding attempt we propose to reveal information bits, which effectively lowers the code rate. MDA is shown to outperform the conventional protocol in regards to the secret key rate (SKR). A 10% decrease in frame error rate and an 8.5% increase in SKR are reported in this paper. A simple early termination for the LDPC decoder is also proposed and implemented. With early termination, MDA has decoding complexity similar to the conventional protocol while having an improved SKR.


2019 ◽  
Vol 9 (22) ◽  
pp. 4956 ◽  
Author(s):  
Xinchao Ruan ◽  
Hang Zhang ◽  
Wei Zhao ◽  
Xiaoxue Wang ◽  
Xuan Li ◽  
...  

We investigate the optical absorption and scattering properties of four different kinds of seawater as the quantum channel. The models of discrete-modulated continuous-variable quantum key distribution (CV-QKD) in free-space seawater channel are briefly described, and the performance of the four-state protocol and the eight-state protocol in asymptotic and finite-size cases is analyzed in detail. Simulation results illustrate that the more complex is the seawater composition, the worse is the performance of the protocol. For different types of seawater channels, we can improve the performance of the protocol by selecting different optimal modulation variances and controlling the extra noise on the channel. Besides, we can find that the performance of the eight-state protocol is better than that of the four-state protocol, and there is little difference between homodyne detection and heterodyne detection. Although the secret key rate of the protocol that we propose is still relatively low and the maximum transmission distance is only a few hundred meters, the research on CV-QKD over the seawater channel is of great significance, which provides a new idea for the construction of global secure communication network.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
M. Avesani ◽  
L. Calderaro ◽  
M. Schiavon ◽  
A. Stanco ◽  
C. Agnesi ◽  
...  

AbstractThe future envisaged global-scale quantum-communication network will comprise various nodes interconnected via optical fibers or free-space channels, depending on the link distance. The free-space segment of such a network should guarantee certain key requirements, such as daytime operation and the compatibility with the complementary telecom-based fiber infrastructure. In addition, space-to-ground links will require the capability of designing light and compact quantum devices to be placed in orbit. For these reasons, investigating available solutions matching all the above requirements is still necessary. Here we present a full prototype for daylight quantum key distribution at 1550 nm exploiting an integrated silicon-photonics chip as state encoder. We tested our prototype in the urban area of Padua (Italy) over a 145 m-long free-space link, obtaining a quantum bit error rate around 0.5% and an averaged secret key rate of 30 kbps during a whole sunny day (from 11:00 to 20:00). The developed chip represents a cost-effective solution for portable free-space transmitters and a promising resource to design quantum optical payloads for future satellite missions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chia-Wei Tsai ◽  
Chun-Wei Yang

AbstractThe mediated semi-quantum key distribution (MSQKD) protocol is an important research issue that lets two classical participants share secret keys securely between each other with the help of a third party (TP). However, in the existing MSQKD protocols, there are two improvable issues, namely (1) the classical participants must be equipped with expensive detectors to avoid Trojan horse attacks and (2) the trustworthiness level of TP must be honest. To the best of our knowledge, none of the existing MSQKD protocols can resolve both these issues. Therefore, this study takes Bell states as the quantum resource to propose a MSQKD protocol, in which the classical participants do not need a Trojan horse detector and the TP is dishonest. Furthermore, the proposed protocol is shown to be secure against well-known attacks and the classical participants only need two quantum capabilities. Therefore, in comparison to the existing MSQKD protocols, the proposed protocol is better practical.


Sign in / Sign up

Export Citation Format

Share Document