scholarly journals AAV-mediated gene augmentation therapy restores critical functions in mutant iPSC-derived PRPF31+/- cells

2019 ◽  
Author(s):  
Elizabeth M. Brydon ◽  
Revital Bronstein ◽  
Adriana Buskin ◽  
Majlinda Lako ◽  
Eric A. Pierce ◽  
...  

ABSTRACTRetinitis pigmentosa (RP) is the most common form of inherited vision loss and is characterized by degeneration of retinal photoreceptor cells and the retinal pigment epithelium (RPE). Mutations in pre-mRNA processing factor 31 (PRPF31) cause dominant RP via haploinsufficiency with incomplete penetrance. There is good evidence that the diverse severity of this disease is a result of differing levels of expression of the wild type allele among patients. Thus, we hypothesize that PRPF31-related RP will be amenable to treatment by adeno-associated virus (AAV)-mediated gene augmentation therapy. To test this hypothesis, we used induced pluripotent stem cells (iPSC) with mutations in PRPF31 and differentiated them into RPE cells. The mutant PRPF31 iPSC-RPE cells recapitulate the cellular phenotype associated with the PRPF31 pathology, including defective cell structure, diminished phagocytic function, defects in ciliogenesis, and compromised barrier function. Treatment of the mutant PRPF31 iPSC-RPE cells with AAV-PRPF31 restored normal phagocytosis and cilia formation, and partially restored structure and barrier function. These results provide proof-of concept that AAV-based gene therapy can be used to treat patients with PRPF31-related RP.

2021 ◽  
Vol 6 (1) ◽  
pp. e000774
Author(s):  
Minwei Wang ◽  
Shiqi Su ◽  
Shaoyun Jiang ◽  
Xinghuai Sun ◽  
Jiantao Wang

Age-related macular degeneration (AMD) is the most common eye disease in elderly patients, which could lead to irreversible vision loss and blindness. Increasing evidence indicates that amyloid β-peptide (Aβ) might be associated with the pathogenesis of AMD. In this review, we would like to summarise the current findings in this field. The literature search was done from 1995 to Feb, 2021 with following keywords, ‘Amyloid β-peptide and age-related macular degeneration’, ‘Inflammation and age-related macular degeneration’, ‘Angiogenesis and age-related macular degeneration’, ‘Actin cytoskeleton and amyloid β-peptide’, ‘Mitochondrial dysfunction and amyloid β-peptide’, ‘Ribosomal dysregulation and amyloid β-peptide’ using search engines Pubmed, Google Scholar and Web of Science. Aβ congregates in subretinal drusen of patients with AMD and participates in the pathogenesis of AMD through enhancing inflammatory activity, inducing mitochondrial dysfunction, altering ribosomal function, regulating the lysosomal pathway, affecting RNA splicing, modulating angiogenesis and modifying cell structure in AMD. The methods targeting Aβ are shown to inhibit inflammatory signalling pathway and restore the function of retinal pigment epithelium cells and photoreceptor cells in the subretinal region. Targeting Aβ may provide a novel therapeutic strategy for AMD.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Cynthia Tang ◽  
Jimin Han ◽  
Sonal Dalvi ◽  
Kannan Manian ◽  
Lauren Winschel ◽  
...  

AbstractMutations in CLN3 lead to photoreceptor cell loss in CLN3 disease, a lysosomal storage disorder characterized by childhood-onset vision loss, neurological impairment, and premature death. However, how CLN3 mutations cause photoreceptor cell death is not known. Here, we show that CLN3 is required for phagocytosis of photoreceptor outer segment (POS) by retinal pigment epithelium (RPE) cells, a cellular process essential for photoreceptor survival. Specifically, a proportion of CLN3 in human, mouse, and iPSC-RPE cells localized to RPE microvilli, the site of POS phagocytosis. Furthermore, patient-derived CLN3 disease iPSC-RPE cells showed decreased RPE microvilli density and reduced POS binding and ingestion. Notably, POS phagocytosis defect in CLN3 disease iPSC-RPE cells could be rescued by wild-type CLN3 gene supplementation. Altogether, these results illustrate a novel role of CLN3 in regulating POS phagocytosis and suggest a contribution of primary RPE dysfunction for photoreceptor cell loss in CLN3 disease that can be targeted by gene therapy.


2021 ◽  
Vol 22 (17) ◽  
pp. 9618
Author(s):  
Jérémie Canonica ◽  
Min Zhao ◽  
Tatiana Favez ◽  
Emmanuelle Gelizé ◽  
Laurent Jonet ◽  
...  

Glucocorticoids are amongst the most used drugs to treat retinal diseases of various origins. Yet, the transcriptional regulations induced by glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) activation in retinal pigment epithelium cells (RPE) that form the outer blood–retina barrier are unknown. Levels of endogenous corticoids, ligands for MR and GR, were measured in human ocular media. Human RPE cells derived from induced pluripotent stem cells (iRPE) were used to analyze the pan-transcriptional regulations induced by aldosterone—an MR-specific agonist, or cortisol or cortisol + RU486—a GR antagonist. The retinal phenotype of transgenic mice that overexpress the human MR (P1.hMR) was analyzed. In the human eye, the main ligand for GR and MR is cortisol. The iRPE cells express functional GR and MR. The subset of genes regulated by aldosterone and by cortisol + RU-486, and not by cortisol alone, mimics an imbalance toward MR activation. They are involved in extracellular matrix remodeling (CNN1, MGP, AMTN), epithelial–mesenchymal transition, RPE cell proliferation and migration (ITGB3, PLAUR and FOSL1) and immune balance (TNFSF18 and PTX3). The P1.hMR mice showed choroidal vasodilation, focal alteration of the RPE/choroid interface and migration of RPE cells together with RPE barrier function alteration, similar to human retinal diseases within the pachychoroid spectrum. RPE is a corticosteroid-sensitive epithelium. MR pathway activation in the RPE regulates genes involved in barrier function, extracellular matrix, neural regulation and epithelial differentiation, which could contribute to retinal pathology.


2017 ◽  
Vol 117 (04) ◽  
pp. 750-757
Author(s):  
Xin Jia ◽  
Chen Zhao ◽  
Qishan Chen ◽  
Yuxiang Du ◽  
Lijuan Huang ◽  
...  

SummaryJunctional adhesion molecule-C (JAM-C) has been shown to play critical roles during development and in immune responses. However, its role in adult eyes under oxidative stress remains poorly understood. Here, we report that JAM-C is abundantly expressed in adult mouse retinae and choroids in vivo and in cultured retinal pigment epithelium (RPE) and photoreceptor cells in vitro. Importantly, both JAM-C expression and its membrane localisation are downregulated by H2O2-induced oxidative stress. Under H2O2-induced oxidative stress, JAM-C is critically required for the survival of human RPE cells. Indeed, loss of JAM-C by siRNA knockdown decreased RPE cell survival. Mechanistically, we show that JAM-C is required to maintain VEGFR2 expression in RPE cells, and VEGFR2 plays an important role in keeping the RPE cells viable since overexpression of VEGFR2 partially restored impaired RPE survival caused by JAM-C knockdown and increased RPE survival. We further show that JAM-C regulates VEGFR2 expression and, in turn, modulates p38 phosphorylation. Together, our data demonstrate that JAM-C plays an important role in maintaining VEGR2 expression to promote RPE cell survival under oxidative stress. Given the vital importance of RPE in the eye, approaches that can modulate JAM-C expression may have therapeutic values in treating diseases with impaired RPE survival.


2018 ◽  
Vol 19 (8) ◽  
pp. 2317 ◽  
Author(s):  
Kai Kaarniranta ◽  
Jakub Kajdanek ◽  
Jan Morawiec ◽  
Elzbieta Pawlowska ◽  
Janusz Blasiak

PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) is a transcriptional coactivator of many genes involved in energy management and mitochondrial biogenesis. PGC-1α expression is associated with cellular senescence, organismal aging, and many age-related diseases, including AMD (age-related macular degeneration), an important global issue concerning vision loss. We and others have developed a model of AMD pathogenesis, in which stress-induced senescence of retinal pigment epithelium (RPE) cells leads to AMD-related pathological changes. PGC-1α can decrease oxidative stress, a key factor of AMD pathogenesis related to senescence, through upregulation of antioxidant enzymes and DNA damage response. PGC-1α is an important regulator of VEGF (vascular endothelial growth factor), which is targeted in the therapy of wet AMD, the most devastating form of AMD. Dysfunction of mitochondria induces cellular senescence associated with AMD pathogenesis. PGC-1α can improve mitochondrial biogenesis and negatively regulate senescence, although this function of PGC-1α in AMD needs further studies. Post-translational modifications of PGC-1α by AMPK (AMP kinase) and SIRT1 (sirtuin 1) are crucial for its activation and important in AMD pathogenesis.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1154 ◽  
Author(s):  
Concetta Scimone ◽  
Simona Alibrandi ◽  
Sergio Zaccaria Scalinci ◽  
Edoardo Trovato Battagliola ◽  
Rosalia D’Angelo ◽  
...  

Inherited retinal dystrophies are characterized by photoreceptor death. Oxidative stress usually occurs, increasing vision loss, and oxidative damage is often reported in retinitis pigmentosa (RP). More than 300 genes have been reported as RP causing. In contrast, choroidal neovascularization (CNV) only occasionally develops in the late stages of RP. We herein study the regulation of RP causative genes that are likely linked to CNV onset under oxidative conditions. We studied how the endogenous adduct N-retinylidene-N-retinylethanolamine (A2E) affects the expression of angiogenic markers in human retinal pigment epithelium (H-RPE) cells and a possible correlation with RP-causing genes. H-RPE cells were exposed to A2E and blue light for 3 and 6h. By transcriptome analysis, genes differentially expressed between A2E-treated cells and untreated ones were detected. The quantification of differential gene expression was performed by the Limma R package. Enrichment pathway analysis by the FunRich tool and gene prioritization by ToppGene allowed us to identify dysregulated genes involved in angiogenesis and linked to RP development. Two RP causative genes, AHR and ROM1, can be associated with an increased risk of CNV development. Genetic analysis of RP patients affected by CNV will confirm this hypothesis.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Hua Zhong ◽  
Yiyun Chen ◽  
Yumei Li ◽  
Rui Chen ◽  
Graeme Mardon

Abstract The era of genomics has demanded the development of more efficient and timesaving approaches to validate gene function in disease. Here, we utilized the CRISPR-Cas9 system to generate Kcnj13 mutant mice by zygote injection to verify the pathogenic role of human KCNJ13, mutations of which are thought to cause Leber congenital amaurosis (LCA), an early-onset form of blindness. We found that complete loss of Kcnj13 is likely postnatal lethal. Among surviving F0-generation mice examined, 80% show mosaic KCNJ13 expression in the retinal pigment epithelium (RPE). Mosaic expression correlates with decreased response to light and photoreceptor degeneration, indicating that Kcnj13 mutant mice mimic human KCNJ13-related LCA disease. Importantly, mosaic animals enable us to directly compare Kcnj13 mutant and wild-type RPE cells in the same eye. We found that RPE cells lacking KCNJ13 protein still survive but overlying photoreceptors exhibit cell degeneration. At the same time, wild-type RPE cells can rescue neighboring photoreceptor cells that overlie mutant RPE cells. These results suggest that KCNJ13 expression is required for RPE cells to maintain photoreceptor survival. Moreover, we show that CRISPR-Cas9 engineered mosaicism can be used to rapidly test candidate gene function in vivo.


2021 ◽  
Author(s):  
Yara A. Samra ◽  
Dina Kira ◽  
Pragya Rajpurohit ◽  
Riyaz Mohamed ◽  
Leah Owen ◽  
...  

Abstract Background: Age related macular degeneration (AMD) is a leading cause of vision loss in old people. Elevated homocysteine (Hcy), known as Hyperhomocysteinemia (HHcy) was reported in association with AMD. We previously reported that HHcy induces AMD like features. The current study suggests activation of N-Methyl-D-aspartate receptor (NMDAR) in retinal pigment epithelium (RPE) cells as a mechanism for HHcy-induced AMD. Serum Hcy and cystathione-β-synthase enzyme (CBS) were assessed by ELISA in AMD patients. The involvement of NMDAR in Hcy’s induced AMD features were evaluated 1)-In-vitro using ARPE-19 cells, primary RPE isolated from mice model of HHcy (CBS) and mouse choroidal endothelial cells (MCEC). 2)-In-vivo using wild type mice and mice deficient in RPE cells NMDAR (NMDARR -/-) with/without intravitreal injection of Hcy. Expression of retinal isolectin-B4, Ki67, HIF-1α, VEGF, NMDAR1 and albumin were assessed by immunofluorescence (IF), Western blot (WB), Optical coherence tomography (OCT), and fluorescein angiography (FA) to evaluate retinal structure, fluorescein leakage and development of choroidal neovascularization (CNV) in living mice. Results: Serum of the neovascular AMD patients showed significant increase in Hcy and decrease in CBS levels. Moreover, Hcy significantly increased angiogenic markers; HIF-1α, VEGF and NMDAR in RPE cells and Ki67 in MCEC. Hcy-injected WT mice showed disrupted retinal morphology and development of CNV. Knocking down NMDAR in RPE improved retinal structure and CNV induction.Conclusion: Our findings underscore the potential role for NMDAR in RPE cells in mediating Hcy-induced features of AMD and CNV induction, thus NMDAR inhibition could provide a promising therapeutic target for AMD.


2021 ◽  
Vol 22 (16) ◽  
pp. 8727
Author(s):  
Angela Armento ◽  
Tiziana L. Schmidt ◽  
Inga Sonntag ◽  
David A. Merle ◽  
Mohamed Ali Jarboui ◽  
...  

Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism of CFH dysregulation confers such a great risk for AMD and its role in RPE cell homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources, or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g., IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g., C3, CFB upregulation, and C5 downregulation) that are known to play a role in AMD. Moreover, our results identify the NF-κB pathway as the major pathway involved in regulating these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-κB pathway work in synergy to maintain inflammatory and complement balance, and in case either one of them is dysregulated, the RPE microenvironment changes towards a proinflammatory AMD-like phenotype.


2021 ◽  
Vol 22 (21) ◽  
pp. 11979
Author(s):  
Peng Shang ◽  
Nadezda A. Stepicheva ◽  
Haitao Liu ◽  
Olivia Chowdhury ◽  
Jonathan Franks ◽  
...  

Degeneration of retinal pigment epithelium (RPE) is one of the most critical phenotypic changes of age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. While cultured polarized RPE cells with original properties are valuable in in vitro models to study RPE biology and the consequences of genetic and/or pharmacological manipulations, the procedure to establish mouse primary PRE cell culture or pluripotent stem cell-derived RPE cells is time-consuming and yields a limited number of cells. Thus, establishing a mouse in situ RPE culture system is highly desirable. Here we describe a novel and efficient method for RPE explant culture that allows for obtaining biologically relevant RPE cells in situ. These RPE explants (herein referred to as RPE flatmounts) are viable in culture for at least 7 days, can be efficiently transduced with adenoviral constructs, and/or treated with a variety of drugs/chemicals followed by downstream analysis of the signaling pathways/biological processes of interest, such as assessment of the autophagy flux, inflammatory response, and receptor tyrosine kinases stimulation. This method of RPE explant culture is highly beneficial for pharmacological and mechanistic studies in the field of RPE biology and AMD research.


Sign in / Sign up

Export Citation Format

Share Document