scholarly journals Screening and identification of MicroRNAs expressed in perirenal adipose tissue during rabbit growth

2019 ◽  
Author(s):  
Guoze Wang ◽  
Guo Guo ◽  
Xueting Tian ◽  
Shenqiang Hu ◽  
Kun Du ◽  
...  

AbstractMiRNAs regulate adipose tissue development, which are closely related to subcutaneous and intramuscular fat deposition and adipocyte differentiation. As an important economic and agricultural animal, rabbits have low adipose tissue deposition and are an ideal model to study adipose regulation. However, the miRNAs related to fat deposition during the growth and development of rabbits are poorly defined. In this study, miRNA-sequencing and bioinformatics analyses were used to profile the miRNAs in rabbit perirenal adipose tissue at 35, 85 and 120 days post-birth. Differentially expressed (DE) miRNAs between different stages were identified by DEseq in R. Target genes of DE miRNAs were predicted by TargetScan and miRanda. To explore the functions of identified miRNAs, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Approximately 1.6 GB of data was obtained by miRNA-seq. A total of 987 miRNAs (780 known and 207 newly predicted) and 174 DE miRNAs were identified. The miRNAs ranged from 18nt to 26nt. GO enrichment and KEGG pathway analyses revealed that the target genes of the DE miRNAs were mainly involved in zinc ion binding, regulation of cell growth, MAPK signaling pathway, and other adipose hypertrophy-related pathways. Six DE miRNAs were randomly selected and their expression profiles were validated by q-PCR. In summary, we provide the first report of the miRNA profiles of rabbit adipose tissue during different growth stages. Our data provide a theoretical reference for subsequent studies on rabbit genetics, breeding and the regulatory mechanisms of adipose development.

2021 ◽  
pp. 1-11
Author(s):  
Yinan Chai ◽  
Lihan Xu ◽  
Rui He ◽  
Liangjun Zhong ◽  
Yuying Wang

BACKGROUND: Pulmonary metastasis is the most frequent cause of death in osteosarcoma (OS) patients. Recently, several bioinformatics studies specific to pulmonary metastatic osteosarcoma (PMOS) have been applied to identify genetic alterations. However, the interpretation and reliability of the results obtained were limited for the independent database analysis. OBJECTIVE: The expression profiles and key pathways specific to PMOS remain to be comprehensively explored. Therefore, in our study, three original datasets of GEO database were selected. METHODS: Initially, three microarray datasets (GSE14359, GSE14827, and GSE85537) were downloaded from the GEO database. Differentially expressed genes (DEGs) between PMOS and nonmetastatic osteosarcoma (NMOS) were identified and mined using DAVID. Subsequently, GO and KEGG pathway analyses were carried out for DEGs. Corresponding PPI network of DEGs was constructed based on the data collected from STRING datasets. The network was visualized with Cytoscape software, and ten hub genes were selected from the network. Finally, survival analysis of these hub genes also used the TARGET database. RESULTS: In total, 569 upregulated and 1238 downregulated genes were filtered as DEGs between PMOS and NMOS. Based on the GO analysis result, these DEGs were significantly enriched in the anatomical structure development, extracellular matrix, biological adhesion, and cell adhesion terms. Based on the KEGG pathway analysis result, these DEGs were mainly enriched in the pathways in cancer, PI3K-Akt signaling, MAPK signaling, focal adhesion, cytokine-cytokine receptor interaction, and IL-17 signaling. Hub genes (ANXA1 and CXCL12) were significantly associated with overall survival time in OS patient. CONCLUSION: Our results may provide new insight into pulmonary metastasis of OS. However, experimental studies remain necessary to elucidate the biological function and mechanism underlying PMOS.


2020 ◽  
Vol 302 (5) ◽  
pp. 1205-1213
Author(s):  
Chunren Zhang ◽  
Chuyi Yu ◽  
Zengxian Lin ◽  
Haixia Pan ◽  
Kunyin Li ◽  
...  

Abstract Purpose The present study established microRNA (miRNA) expression profiles for rat ovaries displaying polycystic ovary syndrome (PCOS) with insulin resistance and explored the underlying biological functions of differentially expressed miRNAs. Methods A PCOS with insulin resistance rat model was created by administering letrozole and a high-fat diet. Total RNA was extracted from the ovaries of PCOS with insulin resistance rats and normal rats. Three ovaries from each group were used to identify differentially expressed miRNAs by deep sequencing. A hierarchical clustering heatmap and volcano plot were used to display the pattern of differentially expressed miRNAs. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to explore the potential target genes of the differentially expressed miRNAs and identify their putative biological function. Nine of the differentially expressed miRNAs were selected for validation by Real-time Quantitative PCR (qRT-PCR). Results A total of 58 differentially expressed miRNAs were identified in the rat ovaries exhibiting PCOS with insulin resistance compared with control ovaries, including 23 miRNAs that were upregulated and 35 miRNAs that were downregulated. GO and KEGG pathway analyses revealed that the predicted target genes were related to metabolic processes, cellular processes, and metabolic pathways. Furthermore, qRT-PCR confirmed that miR-3585-5p and miR-30-5p were significantly upregulated and miR-146-5p was downregulated in the ovaries of PCOS with insulin resistance rats compared with the controls. Conclusion These results indicate that differentially expressed miRNAs in rat ovaries may be involved in the pathophysiology of insulin resistance in PCOS. Our study may be beneficial in establishing miRNAs as novel diagnostic and therapeutic biomarkers for insulin resistance in PCOS.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8119
Author(s):  
Yanli Wang ◽  
Ke Lv ◽  
Mei Zhao ◽  
Hailong Chen ◽  
Guohua Ji ◽  
...  

The circadian clock controls the physiological functions of many tissues including the liver via an autoregulatory transcriptional−translational feedback loop, of which CLOCK is a core positive component. In addition, many studies have indicated that microRNAs (miRNAs) regulate liver function. However, how CLOCK-regulated miRNAs are linked to liver function remains largely unknown. In this study, miRNAs expression profiles were performed in the liver of ClockΔ19 mutant mice. Compared to wild type mice, totals of 61 and 57 putative CLOCK-regulated miRNAs were differentially expressed (fold change absolute value ≥2) at zeitgeber time 2 and zeitgeber time 14, respectively. According to the pathway analyses, the target genes of differentially expressed miRNAs were mainly involved in pathways in cancer, the PI3K-Akt signaling pathway and the MAPK signaling pathway. Protein−protein interaction analyses revealed that the hub genes were primarily associated with pathway in cancer and circadian rhythms. Expression validation showed that while the expression levels of miR-195 and miR-340 were up-regulated, the rhythms of these two miRNAs were always maintained. The expression level of nr1d2 mRNA was down-regulated. We identified a number of prospective CLOCK-regulated miRNAs that play roles in the various physiological processes of the liver, providing a reference to better understanding the potential regulatory mechanisms in the liver.


2020 ◽  
Author(s):  
Dawei Zhang ◽  
Wenjing Wu ◽  
Xin Huang ◽  
Ke Xu ◽  
Cheng Zheng ◽  
...  

Abstract Background: Chinese domestic pig breeds are reputed for pork quality, but their low ratio of lean-to-fat carcass weight decreases production efficiency. A better understanding of the genetic regulation network of SC fat tissue is necessary for the rational selection of Chinese domestic pig breeds. In the present study, SC adipocytes were isolated from Jiaxing Black pigs (a Chinese indigenous pig breed with redundant SC fat deposition) and Large White pigs (a lean-type pig breed with relatively low SC fat deposition) and the expression profiles of mRNAs and lncRNAs were compared by RNA-seq analysis to identify biomarkers correlated with the differences of SC fat deposition between the two breeds.Results: A total of 3,371 differentially expressed genes (DEGs) and 1,182 differentially expressed lncRNAs (DELs) were identified in SC adipocytes between Jiaxing Black (JX) and Large White (LW) pigs, which included 797 upregulated mRNAs, 2,574 downregulated mRNAs, 461 upregulated lncRNAs and 721 downregulated lncRNAs. Gene Ontology and KEGG pathway analyses revealed that the DEGs and DELs were mainly involved in the immune response, cell fate determination, PI3K-Akt signaling pathway and MAPK signaling pathway, which are known to be related to adipogenesis and lipid metabolism. The expression levels of DEGs and DELs according to the RNA-seq data were verified by quantitative PCR, which showed 81.8% consistency. The differences in MAPK pathway activity between JX and LW pigs was confirmed by western blot analysis, with <100-fold elevated p38 phosphorylation in JX pigs.Conclusions: This study offers a detailed characterization of mRNAs and lncRNAs in fat- and lean-type pig breeds. The activity of the MAPK signaling pathway was found to be associated with subcutaneous adipogenesis. These results greatly enhance our understanding of the molecular mechanisms regulating SC fat deposition in pigs.


Lupus ◽  
2021 ◽  
pp. 096120332110614
Author(s):  
Yan Liang ◽  
Ji Zhang ◽  
Wenxian Qiu ◽  
Bo Chen ◽  
Ying Zhou ◽  
...  

Objective Lupus nephritis (LN) is a major end-organ complication of systemic lupus erythematosus (SLE), and the molecular mechanism of LN is not completely clear. Accumulating pieces of evidence indicate the potential vital role of tRNA-derived small RNAs (tsRNAs) in human diseases. Current study aimed to investigate the potential roles of tsRNAs in LN. Methods We herein employed high‐throughput sequencing to screen the expression profiles of tsRNAs in renal tissues of the LN and control groups. To validate the sequencing data, we performed quantitative real-time PCR (qRT-PCR) analysis. Correlational analysis of verified tsRNAs expression and clinical indicators was conducted using linear regression. The potential target genes were also predicted. The biological functions of tsRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Results Our findings revealed that the expression profiles of tsRNAs were significantly altered in the kidney tissues from LN patients compared with control. Overall, 160 tsRNAs were significantly dysregulated in the LN group, of which 79 were upregulated, whereas 81 were downregulated. Subsequent qRT-PCR results confirmed the different expression of candidate tsRNAs. Correlation analysis results found that expression of verified tsRNAs were correlated to clinical indicators. The target prediction results revealed that verified tsRNAs might act on 712 target genes. Further bioinformatics analysis uncovered tsRNAs might participate in the pathogenesis of LN through several associated pathways, including cell adhesion molecules, MAPK signaling pathway, PI3K-Akt signaling pathway and B cell receptor signaling pathway. Conclusion This study provides a novel insight for studying the mechanism of LN.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Md. Tariqul Islam ◽  
Ahlan Sabah Ferdous ◽  
Rifat Ara Najnin ◽  
Suprovath Kumar Sarker ◽  
Haseena Khan

MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops.


2019 ◽  
Author(s):  
Haisheng Ding ◽  
Min Liu ◽  
Changfan Zhou ◽  
Xiangbin You ◽  
Tao Su ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. Results: In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-165 mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 ( PLCβ1) gene was verified to be a target of ssc-mir-423-5p . Conclusions: This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.


2020 ◽  
Author(s):  
Xige He ◽  
Rihan Wu ◽  
Yueying Yun ◽  
Xia Qin ◽  
Lu Chen ◽  
...  

Abstract Background: Sunite sheep are a fat-tailed sheep species with a low percentage of intramuscular fat and good quality lean meat, and their tail fat can be used as a source of dietary fat by humans. To understand the potential regulatory mechanism of different growth stages of tail fat in Sunite sheep, we performed high-throughput RNA sequencing to characterize the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles of the sheep tail fat at the age of 6 months, 18 months, and 30 months.Results: A total of 223 differentially expressed genes (DEGs) and 148 differentially expressed lncRNAs were found in the tail fat of 6-, 18-, and 30-month-old sheep (false discovery rate < 0.05, |Fold Change| ≥ 2). Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we found that fat-related DEGs were mainly expressed at 6 months of age, and gradually decreased at 18 and 30 months of age. The target gene prediction analysis shows that most of the lncRNAs target more than 20 mRNAs as their trans-regulators (53 mRNAs at most). Further, we obtained several fat-related differentially-expressed target genes; these target genes interact with different differentially expressed lncRNAs at various ages and play an important role in the development of tail fat. Based on the DEGs and differentially expressed lncRNAs, we established three co-expression networks for each comparison group. Conclusions: Finally, we conclude that the development of the sheep tail fat is more active during the early stage of growth and gradually decreases with the increase in age. The mutual regulation of lncRNAs and mRNAs may play a key role in this complex biological process, and our findings will provide some basic theoretical data for future studies on tail fat development of fat-tailed sheep.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8522 ◽  
Author(s):  
Phongsakorn Chuammitri ◽  
Soulasack Vannamahaxay ◽  
Benjaporn Sornpet ◽  
Kidsadagon Pringproa ◽  
Prapas Patchanee

Background MicroRNAs (miRNAs) play an essential role in gene regulators in many biological and molecular phenomena. Unraveling the involvement of miRNA as a key cellular factor during in vitro canine parvovirus (CPV) infection may facilitate the discovery of potential intervention candidates. However, the examination of miRNA expression profiles in CPV in tissue culture systems has not been fully elucidated. Method In the present study, we utilized high-throughput small RNA-seq (sRNA-seq) technology to investigate the altered miRNA profiling in miRNA libraries from uninfected (Control) and CPV-2c infected Crandell Reese Feline Kidney cells. Results We identified five of known miRNAs (miR-222-5p, miR-365-2-5p, miR-1247-3p, miR-322-5p and miR-361-3p) and three novel miRNAs (Novel 137, Novel 141 and Novel 102) by sRNA-seq with differentially expressed genes in the miRNA repertoire of CPV-infected cells over control. We further predicted the potential target genes of the aforementioned miRNAs using sequence homology algorithms. Notably, the targets of miR-1247-3p exhibited a potential function associated with cellular defense and humoral response to CPV. To extend the probing scheme for gene targets of miR-1247-3p, we explored and performed Gene Ontology (GO) enrichment analysis of its target genes. We discovered 229 putative targets from a total of 38 enriched GO terms. The top over-represented GO enrichment in biological process were lymphocyte activation and differentiation, marginal zone B cell differentiation, negative regulation of cytokine production, negative regulation of programed cell death, and negative regulation of signaling. We next constructed a GO biological process network composed of 28 target genes of miR-1247-3p, of which, some genes, namely BCL6, DLL1, GATA3, IL6, LEF1, LFNG and WNT1 were among the genes with obviously intersected in multiple GO terms. Conclusion The miRNA-1247-3p and its cognate target genes suggested their great potential as novel therapeutic targets or diagnostic biomarkers of CPV or other related viruses.


2019 ◽  
Author(s):  
Meili Zheng ◽  
Lei Zhao ◽  
Xinchun Yang

AbstractRecent studies have reported circular RNA (circRNA) expression profiles in various tissue types; specifically, a recent work showed a detailed circRNA expression landscape in the heart. However, circRNA expression profile in human epicardial adipose tissue (EAT) remains undefined. RNA-sequencing was carried out to compare circRNA expression patterns in EAT specimens from coronary artery disease (CAD) cases between the heart failure (HF) and non-HF groups. The top highly expressed EAT circRNAs corresponded to genes involved in cell proliferation and inflammatory response, including KIAA0182, RHOBTB3, HIPK3, UBXN7, PCMTD1, N4BP2L2, CFLAR, EPB41L2, FCHO2, FNDC3B and SPECC1. Among the 141 circRNAs substantially different between the HF and non-HF groups (P<0.05;fold change>2), hsa_circ_0005565 stood out, and was mostly associated with positive regulation of metabolic processes and insulin resistancein GO and KEGG pathway analyses, respectively. These data indicate EAT circRNAs contribute to the pathogenesis of metabolic disorders causing HF.


Sign in / Sign up

Export Citation Format

Share Document