scholarly journals Metabolic dysregulation of the lysophospholipid/autotaxin axis in the chromosome 9p21 gene SNP rs10757274

2019 ◽  
Author(s):  
Sven W. Meckelmann ◽  
Jade I. Hawksworth ◽  
Daniel White ◽  
Robert Andrews ◽  
Patricia Rodrigues ◽  
...  

AbstractAimsCommon chromosome 9p21 SNPs increase coronary heart disease (CHD) risk, independent of “traditional lipid risk factors”. However, lipids comprise large numbers of structurally-related molecules not measured in traditional risk measurements, and many have inflammatory bioactivities. Here we applied lipidomic and genomic approaches to three model systems, to characterize lipid metabolic changes in common Chr9p21 SNPs which confer ∼30% elevated CHD risk associated with altered expression of ANRIL, a long ncRNA.Methods and ResultsUntargeted and targeted lipidomics was applied to plasma samples from Northwick Park Heart Study II (NPHSII) homozygotes for AA or GG in rs10757274. Elevated risk GG correlated with reduced lysophosphospholipids (lysoPLs), lysophosphatidic acids (lysoPA) and autotaxin (ATX). Five other risk SNPs did not show this phenotype. Correlation and network analysis showed that lysoPL-lysoPA interconversion was uncoupled from ATX in GG, indicating metabolic dysregulation. To identify candidate genes, transcriptomic data from shRNA downregulation of ANRIL in HEK293 cells was mined. Significantly-altered expression of several lysoPL/lysoPA metabolising enzymes was found (MBOAT2, PLA2G4C, LPCAT2, ACSL6, PNPLA2, PLBD1, PLPP1, PLPP2 and PLPPR2). Next, vascular smooth muscle cells differentiated from iPSCs of individuals homozygous for Chr9p21 risk SNPs were examined. Here, the presence of risk alleles was associated with altered expression of several lysoPL/lysoPA enzymes. Importantly, for several, deletion of the risk locus fully or partially reversed their expression to non-risk haplotype levels: ACSL3, DGKA, PLA2G2A, LPCAT2, LPL, PLA2G3, PNPLA3, PLA2G12A LIPC, LCAT, PLA2G6, ACSL1, MBOAT2.ConclusionA Chr9p21 risk SNP associates with complex alterations in immune-bioactive phospholipids and their enzymatic metabolism. Lipid metabolites and genomic pathways associated with CHD pathogenesis in Chr9p21 and ANRIL-associated disease are demonstrated.One sentence summaryInflammatory phospholipid metabolism defines a cardiovascular disease SNP


2021 ◽  
pp. annrheumdis-2020-218810
Author(s):  
Latanya N Coke ◽  
Hongxiu Wen ◽  
Mary Comeau ◽  
Mustafa H Ghanem ◽  
Andrew Shih ◽  
...  

ObjectivesTo determine if the polymorphism encoding the Arg206Cys substitution in DNASE1L3 explains the association of the DNASE1L3/PXK gene locus with systemic lupus erythematosus (SLE) and to examine the effect of the Arg206Cys sequence change on DNASE1L3 protein function.MethodsConditional analysis for rs35677470 was performed on cases and controls with European ancestry from the SLE Immunochip study, and genotype and haplotype frequencies were compared. DNASE1L3 protein levels were measured in cells and supernatants of HEK293 cells and monocyte-derived dendritic cells expressing recombinant and endogenous 206Arg and 206Cys protein variants.ResultsConditional analysis on rs35677470 eliminated the SLE risk association signal for lead single-nucleotide polymorphisms (SNPs) rs180977001 and rs73081554, which are found to tag the same risk haplotype as rs35677470. The modest effect sizes of the SLE risk genotypes (heterozygous risk OR=1.14 and homozygous risk allele OR=1.68) suggest some DNASE1L3 endonuclease enzyme function is retained. An SLE protective signal in PXK (lead SNP rs11130643) remained following conditioning on rs35677470. The DNASE1L3 206Cys risk variant maintained enzymatic activity, but secretion of the artificial and endogenous DNASE1L3 206Cys protein was substantially reduced.ConclusionsSLE risk association in the DNASE1L3 locus is dependent on the missense SNP rs35677470, which confers a reduction in DNASE1L3 protein secretion but does not eliminate its DNase enzyme function.



2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Øyvind Helgeland ◽  
Jens K. Hertel ◽  
Anders Molven ◽  
Helge Ræder ◽  
Carl G. P. Platou ◽  
...  

Background.Two adjacent regions upstreamCDKN2Bon chromosome 9p21 have been associated with type 2 diabetes (T2D) and progression of cardiovascular disease (CVD). The precise location and number of risk variants have not been completely delineated and a possible synergistic relationship between the adjacent regions is not fully addressed. By a population based cross-sectional case-control design, we genotyped 18 SNPs upstream ofCDKN2Btagging 138 kb in and around two LD-blocks associated with CVD and T2D and investigated associations with T2D, angina pectoris (AP), myocardial infarction (MI), coronary heart disease (CHD; AP or AMI), and stroke using 5,564 subjects from HUNT2.Results.Single point and haplotype analysis showed evidence for only one common T2D risk haplotype (rs10757282∣rs10811661: OR = 1.19,P=2.0×10-3) in the region. We confirmed the strong association between SNPs in the 60 kb CVD region with AP, MI, and CHD(P<0.01). Conditioning on the lead SNPs in the region, we observed two suggestive independent single SNP association signals for MI,rs2065501  (P=0.03)andrs3217986  (P=0.04).Conclusions.We confirmed the association of known variants within the 9p21 interval with T2D and CHD. Our results further suggest that additional CHD susceptibility variants exist in this region.



2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Prithvi Raj ◽  
Ran Song ◽  
Honglin Zhu ◽  
Linley Riediger ◽  
Dong-Jae Jun ◽  
...  

Abstract Background Systemic lupus erythematosus (SLE) is a clinically heterogeneous autoimmune disease characterized by the development of anti-nuclear antibodies. Susceptibility to SLE is multifactorial, with a combination of genetic and environmental risk factors contributing to disease development. Like other polygenic diseases, a significant proportion of estimated SLE heritability is not accounted for by common disease alleles analyzed by SNP array-based GWASs. Death-associated protein 1 (DAP1) was implicated as a candidate gene in a previous familial linkage study of SLE and rheumatoid arthritis, but the association has not been explored further. Results We perform deep sequencing across the DAP1 genomic segment in 2032 SLE patients, and healthy controls, and discover a low-frequency functional haplotype strongly associated with SLE risk in multiple ethnicities. We find multiple cis-eQTLs embedded in a risk haplotype that progressively downregulates DAP1 transcription in immune cells. Decreased DAP1 transcription results in reduced DAP1 protein in peripheral blood mononuclear cells, monocytes, and lymphoblastoid cell lines, leading to enhanced autophagic flux in immune cells expressing the DAP1 risk haplotype. Patients with DAP1 risk allele exhibit significantly higher autoantibody titers and altered expression of the immune system, autophagy, and apoptosis pathway transcripts, indicating that the DAP1 risk allele mediates enhanced autophagy, leading to the survival of autoreactive lymphocytes and increased autoantibody. Conclusions We demonstrate how targeted sequencing captures low-frequency functional risk alleles that are missed by SNP array-based studies. SLE patients with the DAP1 genotype have distinct autoantibody and transcription profiles, supporting the dissection of SLE heterogeneity by genetic analysis.



2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Francy L. Crosby ◽  
Ulrike G. Munderloh ◽  
Curtis M. Nelson ◽  
Michael J. Herron ◽  
Anna M. Lundgren ◽  
...  

ABSTRACT Many pathogenic bacteria translocate virulence factors into their eukaryotic hosts by means of type IV secretion systems (T4SS) spanning the inner and outer membranes. Genes encoding components of these systems have been identified within the order Rickettsiales based upon their sequence similarities to other prototypical systems. Anaplasma phagocytophilum strains are obligate intracellular, tick-borne bacteria that are members of this order. The organization of these components at the genomic level was determined in several Anaplasma phagocytophilum strains, showing overall conservation, with the exceptions of the virB2 and virB6 genes. The virB6 loci are characterized by the presence of four virB6 copies (virB6-1 through virB6-4) arranged in tandem within a gene cluster known as the sodB-virB operon. Interestingly, the virB6-4 gene varies significantly in length among different strains due to extensive tandem repeats at the 3′ end. To gain an understanding of how these enigmatic virB6 genes function in A. phagocytophilum, we investigated their expression in infected human and tick cells. Our results show that these genes are expressed by A. phagocytophilum replicating in both cell types and that VirB6-3 and VirB6-4 proteins are surface exposed. Analysis of an A. phagocytophilum mutant carrying the Himar1 transposon within the virB6-4 gene demonstrated that the insertion not only disrupted its expression but also exerted a polar effect on the sodB-virB operon. Moreover, the altered expression of genes within this operon was associated with the attenuated in vitro growth of A. phagocytophilum in human and tick cells, indicating the importance of these genes in the physiology of this obligate intracellular bacterium in such different environments. IMPORTANCE Knowledge of the T4SS is derived from model systems, such as Agrobacterium tumefaciens. The structure of the T4SS in Rickettsiales differs from the classical arrangement. These differences include missing and duplicated components with structural alterations. Particularly, two sequenced virB6-4 genes encode unusual C-terminal structural extensions resulting in proteins of 4,322 (GenBank accession number AGR79286.1) and 9,935 (GenBank accession number ANC34101.1>) amino acids. To understand how the T4SS is used in A. phagocytophilum, we describe the expression of the virB6 paralogs and explore their role as the bacteria replicate within its host cell. Conclusions about the importance of these paralogs for colonization of human and tick cells are supported by the deficient phenotype of an A. phagocytophilum mutant isolated from a sequence-defined transposon insertion library.



2020 ◽  
Vol 21 (21) ◽  
pp. 8383
Author(s):  
Timothy J. Vyse ◽  
Deborah S. Cunninghame Graham

Background: Prioritizing tag-SNPs carried on extended risk haplotypes at susceptibility loci for common disease is a challenge. Methods: We utilized trans-ancestral exclusion mapping to reduce risk haplotypes at IKZF1 and IKZF3 identified in multiple ancestries from SLE GWAS and ImmunoChip datasets. We characterized functional annotation data across each risk haplotype from publicly available datasets including ENCODE, RoadMap Consortium, PC Hi-C data from 3D genome browser, NESDR NTR conditional eQTL database, GeneCards Genehancers and TF (transcription factor) binding sites from Haploregv4. Results: We refined the 60 kb associated haplotype upstream of IKZF1 to just 12 tag-SNPs tagging a 47.7 kb core risk haplotype. There was preferential enrichment of DNAse I hypersensitivity and H3K27ac modification across the 3′ end of the risk haplotype, with four tag-SNPs sharing allele-specific TF binding sites with promoter variants, which are eQTLs for IKZF1 in whole blood. At IKZF3, we refined a core risk haplotype of 101 kb (27 tag-SNPs) from an initial extended haplotype of 194 kb (282 tag-SNPs), which had widespread DNAse I hypersensitivity, H3K27ac modification and multiple allele-specific TF binding sites. Dimerization of Fox family TFs bound at the 3′ and promoter of IKZF3 may stabilize chromatin looping across the locus. Conclusions: We combined trans-ancestral exclusion mapping and epigenetic annotation to identify variants at both IKZF1 and IKZF3 with the highest likelihood of biological relevance. The approach will be of strong interest to other complex trait geneticists seeking to attribute biological relevance to risk alleles on extended risk haplotypes in their disease of interest.



2021 ◽  
Vol 15 ◽  
Author(s):  
Thomas Ernest James Phillips ◽  
Emily Maguire

Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.



Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 108-108
Author(s):  
Hideki Makishima ◽  
Tetsuichi Yoshizato ◽  
Yasuhito Nannya ◽  
Yasuhide Momozawa ◽  
Yoshiko Atsuta ◽  
...  

Abstract While germline predisposition to myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) has long been recognized mainly through rare familial and pediatric cases, it has been drawing an increasing attention, on the basis of the recent discovery of novel risk alleles for MDS/AML through studies relying on revolutionized sequencing technologies; according to these studies, it suggest that more numbers of MDS/AML cases than expected might have germline predisposition. Moreover, it is suggested that germline variations may also confer predisposition to age-related clonal hematopoiesis or "CHIP", which has been implicated in the development of MDS/AML. In this study, we explored germline predisposition to MDS and CHIP through intensive sequencing of blood samples from large cohorts of AML/MDS patients and 'hematologically' healthy individuals (HHIs), in which germline variants in 21 genes implicated in sporadic or familial MDS/AML or CHIP were interrogated among patients with MDS/AML from the Japan Marrow Donor Program (n=797) and HHIs aged >60 years from Biobank Japan (n=10,852). Germline variants were referred to NCBI dbSNP Build 151 database, excluding the entries in COSMIC ver.7 and in-house database, followed by manual curations. Somatic mutations and CHIP in the 21 genes were also analyzed for MDS/AML and HHIs, respectively. In total, 30,286 germline variants, including both synonymous and non-synonymous changes, were detected in 21 genes in the entire cohort. By comparing their frequencies between in MDS/AML and HHIs, we identified 6 germline variants in showing a significant enrichment in MDS/AML. Among these most frequently observed was variants in DDX41, for which a total of 3,721 variants were detected in 3,688 HHIs. Among these, 3 variants were significantly enriched in MDS/AML, including p.A500fs (OR=13.1 [6.6-25.9] (95%CI) (n=15), p.S363del (OR=41.0, [4.3-349.5]) (n=3), and p.Y259C (OR=34.2, [6.6-176.8]) (n=5). Of interest, 14 of 23 MDS patients with one of these alleles carried somatic DDX41 mutations, typically p.R525H, which were not found in any of HHIs, further supporting the relevance of these DDX41 risk alleles. Also including an additional 2 nonsense/splicing variants, 5 DDX41 alleles found in 25 MDS/AML patients were thought to represent germline predisposition to MDS/AML. Similarly, RUNX1 p.H85N (OR=9.10, [1.52-54.52]) (n=2), CBL p.P782L (OR=4.27, [1.56-11.70]) (n=5), and GNAS p.H69N (OR = 2.90, [1.28-6.59]) (n=7) showed a significant enrichment in MDS/AML. Combined, these putative risk alleles accounted for 4.6% (37/797) of sporadic MDS and sAML. None of these alleles were observed in the Caucasian population of Exome Aggregation Consortium dataset, suggesting Asian origins of these variants. We next evaluated the effects of germline variants on CHIP. CHIP mutations were detected in 929 HHIs, where DNMT3A mutations (n=290) were most prevalent, followed by TET2 (n=124) and ASXL1 (n=68) mutations. By comparing allele frequency of each of 1,276 germline variants between healthy donors with and without CHIP, we identified two haplotypes at the JAK2 and TET2 loci, defined by T/A at c.C489T/c.G2490A (JAK2) and G/G/T at c.G652A/c.G3117A/c.T4140C (TET2), which were significantly enriched in the cases carrying CHIP with the JAK2 (p.V617F) and TET2 mutations, respectively (T/A vs. C/G; OR=3.36, [1.41-8.01] for JAK2 and G/G/T vs. A/A/C; OR=1.85, [1.19-2.86] for TET2). Intriguingly, the JAK2 risk haplotype (C/G) were also enriched in MDS cases with JAK2 p.V617F mutations (T/A vs. C/G; OR=3.06, [1.26-7.60]). Similarly, the TET2 risk haplotype (G/G/T) tended to be enriched in MDS cases with TET2 mutations, although not statistically significant. Finally, variant allele frequency of JAK2 p.V617F mutations in CHIP exceeded 0.5 in 4 out of 26 JAK2 CHIP-positive patients (15%), suggesting the presence of loss of heterozygosity (LOH) in chromosome 9p. In conclusion, through a large-scale detection of germline variants in 21 common drivers of MDS/AML as well as CHIP, we identified multiple novel germline variants or haplotypes that showed a significant predisposition to the development of adult-onset MDS or CHIP, respectively. Our findings provide novel insights into the genetic basis of myeloid leukemogenesis and the development of CHIP. Disclosures Nakagawa: Sumitomo Dainippon Pharma Co., Ltd.: Research Funding. Kanda:Otsuka: Research Funding; Dainippon-Sumitomo: Consultancy, Honoraria, Research Funding; Eisai: Consultancy, Honoraria, Research Funding; Chugai: Consultancy, Honoraria, Research Funding; Nippon-Shinyaku: Research Funding; Astellas: Consultancy, Honoraria, Research Funding; Kyowa-Hakko Kirin: Consultancy, Honoraria, Research Funding; Taiho: Research Funding; Pfizer: Research Funding; MSD: Research Funding; Takeda: Consultancy, Honoraria, Research Funding; Asahi-Kasei: Research Funding; Ono: Consultancy, Honoraria, Research Funding; Sanofi: Research Funding; Novartis: Research Funding; Shionogi: Consultancy, Honoraria, Research Funding; Taisho-Toyama: Research Funding; CSL Behring: Research Funding; Tanabe-Mitsubishi: Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Mochida: Consultancy, Honoraria; Alexion: Consultancy, Honoraria; Takara-bio: Consultancy, Honoraria.



2019 ◽  
Author(s):  
Giusj Monia Pugliese ◽  
Federico Salaris ◽  
Valentina Palermo ◽  
Veronica Marabitti ◽  
Nicolò Morina ◽  
...  

ABSTRACTThe Schimke immuno-osseous dysplasia is an autosomal recessive genetic osteochondrodysplasia characterized by dysmorphism, spondyloepiphyseal dysplasia, nephrotic syndrome and frequently T cell immunodeficiency. Several hypotheses have been proposed to explain pathophysiology of the disease, however, the mechanism by which SMARCAL1 mutations cause the syndrome is elusive. Indeed, animal models of the disease are absent or useless to provide insight into the disease mechanism, since they do not recapitulate the phenotype. We generated a conditional knockdown model of SMARCAL1 in iPSCs to mimic conditions of cells with severe form the disease. Here, we characterize this model for the presence of phenotype linked to the replication caretaker role of SMARCAL1 using multiple cellular endpoints. Our data show that conditional knockdown of SMARCAL1 in human iPSCs induces replication-dependent and chronic accumulation of DNA damage triggering the DNA damage response. Furthermore, they indicate that accumulation of DNA damage and activation of the DNA damage response correlates with increased levels of R-loops and replication-transcription interference. Finally, we provide data showing that, in SMARCAL1-deficient iPSCs, DNA damage response can be maintained active also after differentiation, possibly contributing to the observed altered expression of a subset of germ layer-specific master genes. In conclusion, our conditional SMARCAL1 iPSCs may represent a powerful model where studying pathogenetic mechanisms of severe Schimke immuno-osseous dysplasia, thus overcoming the reported inability of different model systems to recapitulate the disease.



2018 ◽  
Author(s):  
Jacob C Garza ◽  
Xiaoli Qi ◽  
Klaudio Gjeluci ◽  
Melanie P Leussis ◽  
Himanish Basu ◽  
...  

AbstractThe ankyrin 3 gene (ANK3) is a well-established risk gene for psychiatric illness, but the mechanisms underlying its pathophysiology remain elusive. We examined the molecular effects of disrupting brain-specific Ank3 isoforms in mouse and neuronal model systems. RNA sequencing of hippocampus from Ank3+/- and Ank3+/+ mice identified altered expression of 282 genes that were enriched for microtubule-related functions. Results were supported by increased expression of microtubule end-binding protein 3 (EB3), an indicator of microtubule dynamics, in Ank3+/- mouse hippocampus. Live-cell imaging of EB3 movement in primary neurons from Ank3+/- mice revealed impaired elongation of microtubules. Using a CRISPR-dCas9-KRAB transcriptional repressor in mouse neuro-2a cells, we determined that repression of brain-specific Ank3 increased EB3 expression, decreased tubulin acetylation, and increased the soluble:polymerized tubulin ratio, indicating enhanced microtubule dynamics. These changes were rescued by inhibition of glycogen synthase kinase 3 (GSK3) with lithium or CHIR99021, a highly selective GSK3 inhibitor. Brain-specific Ank3 repression in neuro-2a cells increased GSK3 activity (reduced inhibitory phosphorylation) and elevated collapsin response mediator protein 2 (CRMP2) phosphorylation, a known GSK3 substrate and microtubule-binding protein. Pharmacological inhibition of CRMP2 activity attenuated the rescue of EB3 expression and tubulin polymerization in Ank3 repressed cells by lithium or CHIR99021, suggesting microtubule instability induced by Ank3 repression is dependent on CRMP2 activity. Taken together, our data indicate that aNK3 functions in neuronal microtubule dynamics through GSK3 and its downstream substrate CRMP2. These findings reveal cellular and molecular mechanisms underlying brain-specific ANK3 disruption that may be related to its role in psychiatric illness.



Sign in / Sign up

Export Citation Format

Share Document