scholarly journals High throughput CRISPR screening identifies genes involved in macrophage viability and inflammatory pathways

2019 ◽  
Author(s):  
Sergio Covarrubias ◽  
Apple Vollmers ◽  
Allyson Capili ◽  
Michael Boettcher ◽  
Elektra K. Robinson ◽  
...  

AbstractMacrophages are critical cells of the innate immune system involved in the recognition and destruction of invading microbes in addition to the resolution of inflammation and maintenance of homeostasis. Understanding the genes involved in all aspects of macrophage biology is essential to gaining new insights into immune system dysregulation during diseases that range from autoinflammatory to cancer. Here we utilize high throughput clustered regularly interspaced short palindromic repeats (CRISPR) screening to generate a resource that identifies genes required for macrophage viability and function. First, we employ a pooled based CRISPR/Cas nuclease active screening approach to identify essential genes required for macrophage viability by targeting genes within coding exons. In addition, we also target 3’UTRs to gain insights into new cis-regulatory regions that control expression of these essential genes. Second, using our recently generated NF-κB reporter macrophage line, we perform a fluorescence-activated cell sorting (FACS)-based high-throughput genetic screen to identify regulators of inflammation. We identify a number of novel positive and negative regulators of the NF-κB pathway as well as unraveling complexities of the TNF signaling cascade showing it can function in an autocrine manner to negatively regulate the pathway. Utilizing a single complex library design we are capable of interrogating various aspects of macrophage biology, generating a resource for future studies.Author SummaryExcess inflammation is associated with a variety of autoimmune diseases and cancers. Macrophages are important mediators of this inflammatory response. Defining the genes involved in their viability and effector function is needed to completely understand these two important aspects of macrophage biology. Here we screened over 21,000 genes and generated a resource guide of genes required for macrophage viability as well as novel positive and negative regulators of NF-κB signaling.

2021 ◽  
Vol 22 (17) ◽  
pp. 9535
Author(s):  
Yuhuai Xie ◽  
Yuanyuan Wei

Long non-coding RNAs (lncRNAs) represent crucial transcriptional and post-transcriptional gene regulators during antimicrobial responses in the host innate immune system. Studies have shown that lncRNAs are expressed in a highly tissue- and cell-specific- manner and are involved in the differentiation and function of innate immune cells, as well as inflammatory and antiviral processes, through versatile molecular mechanisms. These lncRNAs function via the interactions with DNA, RNA, or protein in either cis or trans pattern, relying on their specific sequences or their transcriptions and processing. The dysregulation of lncRNA function is associated with various human non-infectious diseases, such as inflammatory bowel disease, cardiovascular diseases, and diabetes mellitus. Here, we provide an overview of the regulation and mechanisms of lncRNA function in the development and differentiation of innate immune cells, and during the activation or repression of innate immune responses. These elucidations might be beneficial for the development of therapeutic strategies targeting inflammatory and innate immune-mediated diseases.


Author(s):  
Malini Bhole

Neutrophils are an important component of the innate immune system, forming the first line of defence against bacterial invasion. Abnormalities in either neutrophil numbers or function lead to immunodeficiency disorders affecting the innate immune system, with a predisposition towards developing serious and often life-threatening infections. Alterations in neutrophil numbers and function may also be noted secondary to systemic diseases, where they may act as markers for ongoing disease processes. Most of the primary neutrophil disorders discussed in this chapter will present in childhood. In adults, acquired neutropenia is the commonest neutrophil abnormality encountered in clinical practice, although, rarely, some primary neutrophil defects may present.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Savvas Ioannou ◽  
Michael Voulgarelis

Toll-like receptors (TLRs) belong to a class of molecules known as pattern recognition receptors, and they are part of the innate immune system, although they modulate mechanisms that impact the development of adaptive immune responses. Several studies have shown that TLRs, and their intracellular signalling components, constitute an important cellular pathway mediating the inflammatory process. Moreover, their critical role in the regulation of tissue injury and wound healing process as well as in the regulation of apoptosis is well established. However, interest in the role of these receptors in cancer development and progression has been increasing over the last years. TLRs are likely candidates to mediate effects of the innate immune system within the tumour microenvironment. A rapidly expanding area of research regarding the expression and function of TLRs in cancer cells and its association with chemoresistance and tumourigenesis, and TLR-based therapy as potential immunotherapy in cancer treatment is taking place over the last years.


2018 ◽  
Vol 10 (5-6) ◽  
pp. 432-441 ◽  
Author(s):  
Scott D. Kobayashi ◽  
Natalia Malachowa ◽  
Frank R. DeLeo

Neutrophils are an important component of the innate immune system and provide a front line of defense against bacterial infection. Although most bacteria are killed readily by neutrophils, some bacterial pathogens have the capacity to circumvent destruction by these host leukocytes. The ability of bacterial pathogens to avoid killing by neutrophils often involves multiple attributes or characteristics, including the production of virulence molecules. These molecules are diverse in composition and function, and collectively have the potential to alter or inhibit neutrophil recruitment, phagocytosis, bactericidal activity, and/or apoptosis. Here, we review the ability of bacteria to target these processes.


2006 ◽  
Vol 11 (6) ◽  
pp. 664-671 ◽  
Author(s):  
Diana Buckner ◽  
Suzanne Wilson ◽  
Sandra Kurk ◽  
Michele Hardy ◽  
Nicole Miessner ◽  
...  

Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.


2014 ◽  
Vol 86 (3) ◽  
pp. 1484-1506 ◽  
Author(s):  
JAQUELINE D. BILLER-TAKAHASHI ◽  
ELISABETH C. URBINATI

The understanding of fish immune system structure and function is essential for the development of new technologies and products to improve productivity. This is the first review on immune system of fish with Brazilian studies. Aquaculture in Brazil has shown massive growth in recent years due to methods of culture intensification. However, these procedures led to disease outbreaks, as well as the chemotherapy and the misuse of antibiotics. A viable alternative to avoid the use of chemicals and prevent economic losses is the administration of immunostimulants and prebiotcs, which act by increasing the innate immune system. In Brazil there is a lack of studies on fish immune system, except by some groups that have studied the effects of the immunostimulants administration in various species.


Sign in / Sign up

Export Citation Format

Share Document