scholarly journals Expressional artifact caused by a co-injection marker rol-6 in C. elegans

2019 ◽  
Author(s):  
HoYong Jin ◽  
Scott W. Emmons ◽  
Byunghyuk Kim

ABSTRACTIn transgenic research, selection markers have greatly facilitated the generation of transgenic animals. A prerequisite for a suitable selection marker to be used along with a test gene of interest is that the marker should not affect the phenotype of interest in transformed animals. One of the most common selection markers used in C. elegans transgenic approaches is the rol-6 co-injection marker, which induces a behavioral roller phenotype due to a cuticle defect but is not known to have other side effects. However, we found that the rol-6 co-injection marker can cause expression of GFP in the test sequence in a male-specific interneuron called CP09. We found that the rol-6 gene sequence included in the marker plasmid is responsible for this unwanted expression. Accordingly, the use of the rol-6 co-injection marker is not recommended when researchers intend to examine precise expression or perform functional studies especially targeting male C. elegans neurons. The rol-6 sequence region we identified can be used to drive a specific expression in CP09 neuron for future research.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zoë A Hilbert ◽  
Dennis H Kim

Animal behavior is directed by the integration of sensory information from internal states and the environment. Neuroendocrine regulation of diverse behaviors of Caenorhabditis elegans is under the control of the DAF-7/TGF-β ligand that is secreted from sensory neurons. Here, we show that C. elegans males exhibit an altered, male-specific expression pattern of daf-7 in the ASJ sensory neuron pair with the onset of reproductive maturity, which functions to promote male-specific mate-searching behavior. Molecular genetic analysis of the switch-like regulation of daf-7 expression in the ASJ neuron pair reveals a hierarchy of regulation among multiple inputs—sex, age, nutritional status, and microbial environment—which function in the modulation of behavior. Our results suggest that regulation of gene expression in sensory neurons can function in the integration of a wide array of sensory information and facilitate decision-making behaviors in C. elegans.



eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Zoë A Hilbert ◽  
Dennis H Kim

Sexually dimorphic behaviors are a feature common to species across the animal kingdom, however how such behaviors are generated from mostly sex-shared nervous systems is not well understood. Building on our previous work which described the sexually dimorphic expression of a neuroendocrine ligand, DAF-7, and its role in behavioral decision-making in C. elegans (Hilbert and Kim, 2017), we show here that sex-specific expression of daf-7 is regulated by another neuroendocrine ligand, Pigment Dispersing Factor (PDF-1), which has previously been implicated in regulating male-specific behavior (Barrios et al., 2012). Our analysis revealed that PDF-1 signaling acts sex- and cell-specifically in the ASJ neurons to regulate the expression of daf-7, and we show that differences in PDFR-1 receptor activity account for the sex-specific effects of this pathway. Our data suggest that modulation of the sex-shared nervous system by a cascade of neuroendocrine signals can shape sexually dimorphic behaviors.



2018 ◽  
Author(s):  
Zoë A. Hilbert ◽  
Dennis H. Kim

ABSTRACTSexually dimorphic behaviors are observed in species across the animal kingdom, however the relative contributions of sex-specific and sex-shared nervous systems to such behaviors are not fully understood. Building on our previous work which described the sexually dimorphic expression of a neuroendocrine ligand, DAF-7, and its role in behavioral decision-making inC. elegans(Hilbert and Kim, 2017), we show here that sex-specific expression ofdaf-7is regulated by another neuroendocrine ligand, Pigment Dispersing Factor (PDF-1), which has previously been implicated in regulating male-specific behavior (Barrios et al., 2012). Our analysis revealed that PDF-1 acts sex- and cell-specifically in the ASJ neurons to regulate the expression ofdaf-7and we show that differences in the expression of the PDFR-1 receptor account for the sex-specific effects of this pathway. Our data suggest that modulation of the sex-shared nervous system by neuroendocrine signaling pathways can play a role in shaping sexually dimorphic behaviors.



Genetics ◽  
1996 ◽  
Vol 144 (2) ◽  
pp. 587-595 ◽  
Author(s):  
Mario de Bono ◽  
Jonathan Hodgkin

Abstract The tra-1 gene is a terminal regulator of somatic sex in Caenorhabditis elegans: high tra-1 activity elicits female development, low tra-1 activity elicits male development. To investigate the function and evolution of tra-1, we examined the tra-1 gene from the closely related nematode C. briggsae. Ce-tra-1 and Cb-tra-1 are unusually divergent. Each gene generates two transcripts, but only one of these is present in both species. This common transcript encodes TRA-1A, which shows only 44% amino acid identity between the species, a figure much lower than that for previously compared genes. A Cb-tra-1 transgene rescues many tissues of tra-1(nul1) mutants of C. elegans but not the somatic gonad or germ line. This transgene also causes nongonadal feminization of XO animals, indicating incorrect sexual regulation. Alignment of Ce-TRA-1A and Cb-TRA-1A defines several conserved regions likely to be important for tra-1 function. The phenotypic differences between Ce-tra-1(null) mutants rescued by Cb-tra-1 transgenes and wild-type C. elegans indicate significant divergence of regulatory regions. These molecular and functional studies suggest that evolution of sex determination in nematodes is rapid and genetically complex.



2021 ◽  
Vol 22 (11) ◽  
pp. 6039
Author(s):  
Justine Meunier ◽  
Rocio-Nur Villar-Quiles ◽  
Isabelle Duband-Goulet ◽  
Ana Ferreiro

Defects in transcriptional and cell cycle regulation have emerged as novel pathophysiological mechanisms in congenital neuromuscular disease with the recent identification of mutations in the TRIP4 and ASCC1 genes, encoding, respectively, ASC-1 and ASCC1, two subunits of the ASC-1 (Activating Signal Cointegrator-1) complex. This complex is a poorly known transcriptional coregulator involved in transcriptional, post-transcriptional or translational activities. Inherited defects in components of the ASC-1 complex have been associated with several autosomal recessive phenotypes, including severe and mild forms of striated muscle disease (congenital myopathy with or without myocardial involvement), but also cases diagnosed of motor neuron disease (spinal muscular atrophy). Additionally, antenatal bone fractures were present in the reported patients with ASCC1 mutations. Functional studies revealed that the ASC-1 subunit is a novel regulator of cell cycle, proliferation and growth in muscle and non-muscular cells. In this review, we summarize and discuss the available data on the clinical and histopathological phenotypes associated with inherited defects of the ASC-1 complex proteins, the known genotype–phenotype correlations, the ASC-1 pathophysiological role, the puzzling question of motoneuron versus primary muscle involvement and potential future research avenues, illustrating the study of rare monogenic disorders as an interesting model paradigm to understand major physiological processes.



Genetics ◽  
2009 ◽  
Vol 183 (3) ◽  
pp. 1165-1173 ◽  
Author(s):  
Shu Kondo ◽  
Matthew Booker ◽  
Norbert Perrimon

RNAi-mediated gene knockdown in Drosophila melanogaster is a powerful method to analyze loss-of-function phenotypes both in cell culture and in vivo. However, it has also become clear that false positives caused by off-target effects are prevalent, requiring careful validation of RNAi-induced phenotypes. The most rigorous proof that an RNAi-induced phenotype is due to loss of its intended target is to rescue the phenotype by a transgene impervious to RNAi. For large-scale validations in the mouse and Caenorhabditis elegans, this has been accomplished by using bacterial artificial chromosomes (BACs) of related species. However, in Drosophila, this approach is not feasible because transformation of large BACs is inefficient. We have therefore developed a general RNAi rescue approach for Drosophila that employs Cre/loxP-mediated recombination to rapidly retrofit existing fosmid clones into rescue constructs. Retrofitted fosmid clones carry a selection marker and a phiC31 attB site, which facilitates the production of transgenic animals. Here, we describe our approach and demonstrate proof-of-principle experiments showing that D. pseudoobscura fosmids can successfully rescue RNAi-induced phenotypes in D. melanogaster, both in cell culture and in vivo. Altogether, the tools and method that we have developed provide a gold standard for validation of Drosophila RNAi experiments.



1985 ◽  
Vol 5 (6) ◽  
pp. 1295-1300
Author(s):  
Y Barra ◽  
K Tanaka ◽  
K J Isselbacher ◽  
G Khoury ◽  
G Jay

The identification of a unique major histocompatibility complex class I gene, designated Q10, which encodes a secreted rather than a cell surface antigen has led to questions regarding its potential role in regulating immunological functions. Since the Q10 gene is specifically activated only in the liver, we sought to define the molecular mechanisms which control its expression in a tissue-specific fashion. Results obtained by transfection of the cloned Q10 gene, either in the absence or presence of a heterologous transcriptional enhancer, into a variety of cell types of different tissue derivations are consistent with the Q10 gene being regulated at two levels. The first is by a cis-dependent mechanism which appears to involve site-specific DNA methylation. The second is by a trans-acting mechanism which would include the possibility of an enhancer binding factor. The ability to efficiently express the Q10 gene in certain transfected cell lines offers an opportunity to obtain this secreted class I antigen in quantities sufficient for functional studies; this should also make it possible to define regulatory sequences which may be responsible for the tissue-specific expression of Q10.





2021 ◽  
Author(s):  
Jonathan D Rumley ◽  
Elicia A Preston ◽  
Dylan Cook ◽  
Felicia L Peng ◽  
Amanda L Zacharias ◽  
...  

Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/β-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.



Sign in / Sign up

Export Citation Format

Share Document