scholarly journals Functional characterisation of gut microbiota and metabolism in Type 2 diabetes indicates that Clostridiales and Enterococcus could play a key role in the disease

2019 ◽  
Author(s):  
Marina Mora-Ortiz ◽  
Alain Oregioni ◽  
Sandrine P. Claus

AbstractThere is growing evidence indicating that gut microbiota contributes to the development of metabolic syndrome and Type 2 Diabetes (T2D). The most widely-used model for T2D research is the leptin deficient db/db mouse model. Yet, a characterisation of the gut microbial composition in this model in relationship with the metabolism is lacking. The objectives of this study were to identify metabolomics and microbial modulations associated with T2D in the db/db mouse model. The majority of microbial changes observed included an increase of Enterobacteriaceae and a decrease of Clostridiales in diabetics. The metabolomics interrogation of caecum indicated a lower proteolytic activity in diabetics, who also showed higher Short-Chain Fatty Acid (SCFA) levels. In the case of faeces, the model identified 9 metabolites, the main ones were acetate, butyrate and Branched Chain Amino Acids (BCAAs). Finally, liver was the organ with more metabolic links with gut-microbiota followed by the Gut-Brain Axis (GBA). In conclusion, the interaction between Clostridiales and Enterococcus with caecal metabolism could play a key role in the onset and development of diabetes. Further studies should investigate whether the role of these bacteria is causal or co-occurring.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cai Tan ◽  
Zhihua Zheng ◽  
Xiaogang Wan ◽  
Jiaqing Cao ◽  
Ran Wei ◽  
...  

AbstractThe change in gut microbiota is an important mechanism of the amelioration of type 2 diabetes mellitus (T2DM) after bariatric surgery. Here, we observe that the modified jejunoileal bypass effectively decreases body weight gain, fasting blood glucose, and lipids level in serum; additionally, islet β-cell function, glucose tolerance, and insulin resistance were markedly ameliorated. The hypoglycemic effect and the improvement in islet β-cell function depend on the changes in gut microbiota structure. modified jejunoileal bypass increases the abundance of gut Escherichia coli and Ruminococcus gnavus and the levels of serum glycine, histidine, and glutamine in T2DM rats; and decreases the abundance of Prevotella copri and the levels of serum branched chain amino acids, which are significantly related to the improvement of islet β-cell function in T2DM rats. Our results suggest that amino acid metabolism may contribute to the islet β-cell function in T2DM rats after modified jejunoileal bypass and that improving gut microbiota composition is a potential therapeutic strategy for T2DM.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractA strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.


2019 ◽  
Vol 10 (5) ◽  
pp. 2935-2946 ◽  
Author(s):  
Rongkang Hu ◽  
Feng Zeng ◽  
Linxiu Wu ◽  
Xuzhi Wan ◽  
Yongfang Chen ◽  
...  

Carrot juice fermented with Lactobacillus rhamnosus GG, enriched with free phenolics, organic acids and short-chain fatty acid, has the potential to ameliorate type 2 diabetes, in part through modulating specific gut microbiota and regulating the mRNA and protein expressions levels involved in glucose metabolism.


2015 ◽  
Vol 172 (4) ◽  
pp. R167-R177 ◽  
Author(s):  
Kristine H Allin ◽  
Trine Nielsen ◽  
Oluf Pedersen

Perturbations of the composition and function of the gut microbiota have been associated with metabolic disorders including obesity, insulin resistance and type 2 diabetes. Studies on mice have demonstrated several underlying mechanisms including host signalling through bacterial lipopolysaccharides derived from the outer membranes of Gram-negative bacteria, bacterial fermentation of dietary fibres to short-chain fatty acids and bacterial modulation of bile acids. On top of this, an increased permeability of the intestinal epithelium may lead to increased absorption of macromolecules from the intestinal content resulting in systemic immune responses, low-grade inflammation and altered signalling pathways influencing lipid and glucose metabolism. While mechanistic studies on mice collectively support a causal role of the gut microbiota in metabolic diseases, the majority of studies in humans are correlative of nature and thus hinder causal inferences. Importantly, several factors known to influence the risk of type 2 diabetes, e.g. diet and age, have also been linked to alterations in the gut microbiota complicating the interpretation of correlative studies. However, based upon the available evidence, it is hypothesised that the gut microbiota may mediate or modulate the influence of lifestyle factors triggering development of type 2 diabetes. Thus, the aim of this review is to critically discuss the potential role of the gut microbiota in the pathophysiology and pathogenesis of type 2 diabetes.


2017 ◽  
Vol 8 ◽  
Author(s):  
Lidia Sanchez-Alcoholado ◽  
Daniel Castellano-Castillo ◽  
Laura Jordán-Martínez ◽  
Isabel Moreno-Indias ◽  
Pilar Cardila-Cruz ◽  
...  

2021 ◽  
Author(s):  
Yoichiro Kashiwagi ◽  
Syunsuke Aburaya ◽  
Naoyuki Sugiyama ◽  
Yuki Narukawa ◽  
Yuta Sakamoto ◽  
...  

Abstract Periodontal infection is thought to generate systemic inflammation, thus aggravating diabetes. Furthermore, orally administered periodontal pathogens may directly alter the gut microbiota. To elucidate this, using an obese db/db diabetes mice, orally treated with Porphyromonas gingivalis (Pg), we screened for Pg-specific peptides in intestinal fecal specimens and examined whether Pg localization affected the intestinal microbiota profile altering gut metabolite levels. Finally, we screened whether deterioration of fasting hyperglycemia was related to changes in intrahepatic glucose metabolism, using proteome and metabolome analyses. As results; (1) Oral Pg treatment aggravated both fasting and postprandial hyperglycemia (P < 0.05) with a significant (P < 0.01) increase in dental alveolar bone resorption. (2) Pg-specific peptides were identified in fecal specimens after oral Pg treatment and intestinal Pg profoundly altered gut microbiome profiles at the phylum, family, and genus levels. Prevotella showed the largest increase in abundance. Furthermore, Pg-treatment significantly altered intestinal metabolite levels. (3) Fasting hyperglycemia was associated with increases in gluconeogenesis-related enzyme and metabolite levels without changes in proinflammatory cytokine expressions and insulin resistance. This work reveals that oral Pg administration induced gut microbiota changes, leading to entero-hepatic metabolic derangements, thereby aggravating hyperglycemia in an obese type 2 diabetes mouse model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoichiro Kashiwagi ◽  
Shunsuke Aburaya ◽  
Naoyuki Sugiyama ◽  
Yuki Narukawa ◽  
Yuta Sakamoto ◽  
...  

AbstractPeriodontal infection induces systemic inflammation; therefore, aggravating diabetes. Orally administered periodontal pathogens may directly alter the gut microbiota. We orally treated obese db/db diabetes mice using Porphyromonas gingivalis (Pg). We screened for Pg-specific peptides in the intestinal fecal specimens and examined whether Pg localization influenced the intestinal microbiota profile, in turn altering the levels of the gut metabolites. We evaluated whether the deterioration in fasting hyperglycemia was related to the changes in the intrahepatic glucose metabolism, using proteome and metabolome analyses. Oral Pg treatment aggravated both fasting and postprandial hyperglycemia (P < 0.05), with a significant (P < 0.01) increase in dental alveolar bone resorption. Pg-specific peptides were identified in fecal specimens following oral Pg treatment. The intestinal Pg profoundly altered the gut microbiome profiles at the phylum, family, and genus levels; Prevotella exhibited the largest increase in abundance. In addition, Pg-treatment significantly altered intestinal metabolite levels. Fasting hyperglycemia was associated with the increase in the levels of gluconeogenesis-related enzymes and metabolites without changes in the expression of proinflammatory cytokines and insulin resistance. Oral Pg administration induced gut microbiota changes, leading to entero-hepatic metabolic derangements, thus aggravating hyperglycemia in an obese type 2 diabetes mouse model.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Maria Luca ◽  
Maurizio Di Mauro ◽  
Marco Di Mauro ◽  
Antonina Luca

Gut microbiota consists of over 100 trillion microorganisms including at least 1000 different species of bacteria and is crucially involved in physiological and pathophysiological processes occurring in the host. An imbalanced gastrointestinal ecosystem (dysbiosis) seems to be a contributor to the development and maintenance of several diseases, such as Alzheimer’s disease, depression, and type 2 diabetes mellitus. Interestingly, the three disorders are frequently associated as demonstrated by the high comorbidity rates. In this review, we introduce gut microbiota and its role in both normal and pathological processes; then, we discuss the importance of the gut-brain axis as well as the role of oxidative stress and inflammation as mediators of the pathological processes in which dysbiosis is involved. Specific sections pertain the role of the altered gut microbiota in the pathogenesis of Alzheimer’s disease, depression, and type 2 diabetes mellitus. The therapeutic implications of microbiota manipulation are briefly discussed. Finally, a conclusion comments on the possible role of dysbiosis as a common pathogenetic contributor (via oxidative stress and inflammation) shared by the three disorders.


Sign in / Sign up

Export Citation Format

Share Document