scholarly journals Alternative polyadenylation mediates genetic regulation of gene expression

2019 ◽  
Author(s):  
Briana Mittleman ◽  
Sebastian Pott ◽  
Shane Warland ◽  
Tony Zeng ◽  
Mayher Kaur ◽  
...  

AbstractWith the exception of mRNA splicing, little is known about co-transcriptional or post-transcriptional regulatory mechanisms that link noncoding variation to variation in organismal traits. To begin addressing this gap, we used 3’ Seq to characterize alternative polyadenylation (APA) in the nuclear and total RNA fractions of 52 HapMap Yoruba lymphoblastoid cell lines, which we have studied extensively in the past. We identified thousands of polyadenylation sites that are differentially detected in nuclear mRNA and whole cell mRNA, and found that APA is an important mediator of genetic effects on gene regulation and complex traits. Specifically, we mapped 602 apaQTLs at 10% FDR, of which 152 were found only in the nuclear fraction. Nuclear-specific apaQTLs are highly enriched in introns and are also often associated with changes in steady-state expression levels, suggesting a widespread mechanism whereby genetic variants decrease mRNA expression levels by increasing usage of intronic PAS. We identified 24 apaQTLs associated with protein expression levels, but not mRNA expression, and found that eQTLs that are not associated with chromatin QTLs are enriched in apaQTLs. These findings support multiple independent pathways through which genetic effects on APA can impact gene regulation. Finally, we found that 19% of apaQTLs were also previously associated with disease. Thus, our work demonstrates that APA links genetic variation to variation in gene expression levels, protein expression levels, and disease risk, and reveals uncharted modes of genetic regulation.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Briana E Mittleman ◽  
Sebastian Pott ◽  
Shane Warland ◽  
Tony Zeng ◽  
Zepeng Mu ◽  
...  

Little is known about co-transcriptional or post-transcriptional regulatory mechanisms linking noncoding variation to variation in organismal traits. To begin addressing this gap, we used 3’ Seq to study the impact of genetic variation on alternative polyadenylation (APA) in the nuclear and total mRNA fractions of 52 HapMap Yoruba human lymphoblastoid cell lines. We mapped 602 APA quantitative trait loci (apaQTLs) at 10% FDR, of which 152 were nuclear specific. Effect sizes at intronic apaQTLs are negatively correlated with eQTL effect sizes. These observations suggest genetic variants can decrease mRNA expression levels by increasing usage of intronic PAS. We also identified 24 apaQTLs associated with protein levels, but not mRNA expression. Finally, we found that 19% of apaQTLs can be associated with disease. Thus, our work demonstrates that APA links genetic variation to variation in gene expression, protein expression, and disease risk, and reveals uncharted modes of genetic regulation.


2020 ◽  
Vol 35 (2) ◽  
pp. 377-393 ◽  
Author(s):  
Sally Mortlock ◽  
Raden I Kendarsari ◽  
Jenny N Fung ◽  
Greg Gibson ◽  
Fei Yang ◽  
...  

Abstract STUDY QUESTION Are genetic effects on endometrial gene expression tissue specific and/or associated with reproductive traits and diseases? SUMMARY ANSWER Analyses of RNA-sequence data and individual genotype data from the endometrium identified novel and disease associated, genetic mechanisms regulating gene expression in the endometrium and showed evidence that these mechanisms are shared across biologically similar tissues. WHAT IS KNOWN ALREADY The endometrium is a complex tissue vital for female reproduction and is a hypothesized source of cells initiating endometriosis. Understanding genetic regulation specific to, and shared between, tissue types can aid the identification of genes involved in complex genetic diseases. STUDY DESIGN, SIZE, DURATION RNA-sequence and genotype data from 206 individuals was analysed and results were compared with large publicly available datasets. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA-sequencing and genotype data from 206 endometrial samples was used to identify the influence of genetic variants on gene expression, via expression quantitative trait loci (eQTL) analysis and to compare these endometrial eQTLs with those in other tissues. To investigate the association between endometrial gene expression regulation and reproductive traits and diseases, we conducted a tissue enrichment analysis, transcriptome-wide association study (TWAS) and summary data-based Mendelian randomisation (SMR) analyses. Transcriptomic data was used to test differential gene expression between women with and without endometriosis. MAIN RESULTS AND THE ROLE OF CHANCE A tissue enrichment analysis with endometriosis genome-wide association study summary statistics showed that genes surrounding endometriosis risk loci were significantly enriched in reproductive tissues. A total of 444 sentinel cis-eQTLs (P < 2.57 × 10−9) and 30 trans-eQTLs (P < 4.65 × 10−13) were detected, including 327 novel cis-eQTLs in endometrium. A large proportion (85%) of endometrial eQTLs are present in other tissues. Genetic effects on endometrial gene expression were highly correlated with the genetic effects on reproductive (e.g. uterus, ovary) and digestive tissues (e.g. salivary gland, stomach), supporting a shared genetic regulation of gene expression in biologically similar tissues. The TWAS analysis indicated that gene expression at 39 loci is associated with endometriosis, including five known endometriosis risk loci. SMR analyses identified potential target genes pleiotropically or causally associated with reproductive traits and diseases including endometriosis. However, without taking account of genetic variants, a direct comparison between women with and without endometriosis showed no significant difference in endometrial gene expression. LARGE SCALE DATA The eQTL dataset generated in this study is available at http://reproductivegenomics.com.au/shiny/endo_eqtl_rna/. Additional datasets supporting the conclusions of this article are included within the article and the supplementary information files, or are available on reasonable request. LIMITATIONS, REASONS FOR CAUTION Data are derived from fresh tissue samples and expression levels are an average of expression from different cell types within the endometrium. Subtle cell-specifc expression changes may not be detected and differences in cell composition between samples and across the menstrual cycle will contribute to sample variability. Power to detect tissue specific eQTLs and differences between women with and without endometriosis was limited by the sample size in this study. The statistical approaches used in this study identify the likely gene targets for specific genetic risk factors, but not the functional mechanism by which changes in gene expression may influence disease risk. WIDER IMPLICATIONS OF THE FINDINGS Our results identify novel genetic variants that regulate gene expression in endometrium and the majority of these are shared across tissues. This allows analysis with large publicly available datasets to identify targets for female reproductive traits and diseases. Much larger studies will be required to identify genetic regulation of gene expression that will be specific to endometrium. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Health and Medical Research Council (NHMRC) under project grants GNT1026033, GNT1049472, GNT1046880, GNT1050208, GNT1105321, GNT1083405 and GNT1107258. G.W.M is supported by a NHMRC Fellowship (GNT1078399). J.Y is supported by an ARC Fellowship (FT180100186). There are no competing interests.


2021 ◽  
Author(s):  
Marios Arvanitis ◽  
Karl Tayeb ◽  
Benjamin J Strober ◽  
Alexis Battle

Understanding the mechanisms that underlie genetic regulation of gene expression is crucial to explaining the diversity that governs complex traits. Large scale expression quantitative trait locus (eQTL) studies have been instrumental in identifying genetic variants that influence the expression of target genes. However, a large fraction of disease-associated genetic variants have not been clearly explained by current eQTL data, frustrating attempts to use these data to comprehensively characterize disease loci. One notable observation from recent studies is that cis-eQTL effects are often shared across different cell types and tissues. This would suggest that common genetic variants impacting steady-state, adult gene expression are largely tolerated, shared across tissues, and less relevant to disease. However, allelic heterogeneity and complex patterns of linkage disequilibrium (LD) within each locus may skew the quantification of sharing of genetic effects between tissues, impede our ability to identify causal variants, and hinder the identification of regulatory effects for disease-associated genetic variants. Indeed, recent research suggests that multiple causal variants are often present in many eQTL and complex trait associated loci. Here, we re-analyze tissue-specificity of genetic effects in the presence of LD and allelic heterogeneity, proposing a novel method, CAFEH, that improves the identification of causal regulatory variants across tissues and their relationship to disease loci.


2020 ◽  
Author(s):  
Briana E Mittleman ◽  
Sebastian Pott ◽  
Shane Warland ◽  
Tony Zeng ◽  
Zepeng Mu ◽  
...  

2022 ◽  
Vol 3 ◽  
Author(s):  
Sally Mortlock ◽  
Brett McKinnon ◽  
Grant W. Montgomery

The endometrium is a complex and dynamic tissue essential for fertility and implicated in many reproductive disorders. The tissue consists of glandular epithelium and vascularised stroma and is unique because it is constantly shed and regrown with each menstrual cycle, generating up to 10 mm of new mucosa. Consequently, there are marked changes in cell composition and gene expression across the menstrual cycle. Recent evidence shows expression of many genes is influenced by genetic variation between individuals. We and others have reported evidence for genetic effects on hundreds of genes in endometrium. The genetic factors influencing endometrial gene expression are highly correlated with the genetic effects on expression in other reproductive (e.g., in uterus and ovary) and digestive tissues (e.g., salivary gland and stomach), supporting a shared genetic regulation of gene expression in biologically similar tissues. There is also increasing evidence for cell specific genetic effects for some genes. Sample size for studies in endometrium are modest and results from the larger studies of gene expression in blood report genetic effects for a much higher proportion of genes than currently reported for endometrium. There is also emerging evidence for the importance of genetic variation on RNA splicing. Gene mapping studies for common disease, including diseases associated with endometrium, show most variation maps to intergenic regulatory regions. It is likely that genetic risk factors for disease function through modifying the program of cell specific gene expression. The emerging evidence from our gene mapping studies coupled with tissue specific studies, and the GTEx, eQTLGen and EpiMap projects, show we need to expand our understanding of the complex regulation of gene expression. These data also help to link disease genetic risk factors to specific target genes. Combining our data on genetic regulation of gene expression in endometrium, and cell types within the endometrium with gene mapping data for endometriosis and related diseases is beginning to uncover the specific genes and pathways responsible for increased risk of these diseases.


2018 ◽  
Author(s):  
Ting Qi ◽  
Yang Wu ◽  
Jian Zeng ◽  
Futao Zhang ◽  
Angli Xue ◽  
...  

AbstractUnderstanding the difference in genetic regulation of gene expression between brain and blood is important for discovering genes associated with brain-related traits and disorders. Here, we estimate the correlation of genetic effects at the top associated cis-expression (cis-eQTLs or cis-mQTLs) between brain and blood for genes expressed (or CpG sites methylated) in both tissues, while accounting for errors in their estimated effects (rb). Using publicly available data (n = 72 to l,366), we find that the genetic effects of cis-eQTLs (PeQTL < 5×10−8) or mQTLs (PmQTL < 1×10−10) are highly correlated between independent brain and blood samples ( with SE = 0.015 for cis-eQTL and with SE = 0.006 for cis-mQTLs). Using meta-analyzed brain eQTL/mQTL data (n = 526 to 1,194), we identify 61 genes and 167 DNA methylation (DNAm) sites associated with 4 brain-related traits and disorders. Most of these associations are a subset of the discoveries (97 genes and 295 DNAm sites) using data from blood with larger sample sizes (n = l,980 to 14,115). We further find that cis-eQTLs with tissue-specific effects are approximately uniformly distributed across all the functional annotation categories, and that mean difference in gene expression level between brain and blood is almost independent of the difference in the corresponding cis-eQTL effect. Our results demonstrate the gain of power in gene discovery for brain-related phenotypes using blood cis-eQTL or cis-mQTL data with large sample sizes.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Hu ◽  
Xiaoqian Shang ◽  
Liang Wang ◽  
Jiahui Fan ◽  
Yue Wang ◽  
...  

Abstract Aim Brucellar spondylitis (BS) is one of the most serious complications of brucellosis. CXCR3 is closely related to the severity of disease infection. This research aimed to study the degree of BS inflammatory damage through analyzing the expression levels of CXCR3 and its ligands (CXCL9 and CXCL10) in patients with BS. Methods A total of 29 BS patients and 15 healthy controls were enrolled. Real-Time PCR was used to detect the mRNA expression levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood mononuclear cells (PBMCs) of BS patients and healthy controls. Hematoxylin-Eosin staining was used to show the pathological changes in BS lesion tissues. Immunohistochemistry staining was used to show the protein expression levels of Brucella-Ab, IFN-γ, CXCR3, CXCL9 and CXCL10 in BS lesion tissues. At the same time, ELISA was used to detect the serum levels of IFN-γ, CXCL9 CXCL10 and autoantibodies against CXCR3 in patients with BS. Results In lesion tissue of BS patients, it showed necrosis of cartilage, acute or chronic inflammatory infiltration. Brucella-Ab protein was abundantly expressed in close lesion tissue. And the protein expression levels of IFN-γ, CXCR3 and CXCL10 were highly expressed in close lesion tissue and serum of BS patients. At the same time, the mRNA expression levels of IFN-γ, CXCR3 and CXCL10 in PBMCs of BS patients were significantly higher than those in controls. Conclusion In our research, the expression levels of IFN-γ, CXCR3 and its ligands were significantly higher than those in controls. It suggested that high expression levels of IFN-γ, CXCR3 and its ligands indicated a serious inflammatory damage in patients with BS.


2015 ◽  
Vol 2015 ◽  
pp. 1-20 ◽  
Author(s):  
Hiroshi Kondo ◽  
Keiko Miyoshi ◽  
Shoji Sakiyama ◽  
Akira Tangoku ◽  
Takafumi Noma

Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated anin vitrosystem to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII) cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12) were further analyzed. Under serum-free culture conditions,surfactant protein C(SPC), an ATII marker, was upregulated in both H12 and B7.Aquaporin 5(AQP5), an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited,SPCandthyroid transcription factor-1(TTF-1) expression levels were enhanced. After treatment with dexamethasone (DEX), 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine (IBMX), and keratinocyte growth factor (KGF),surfactant protein BandTTF-1expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.


2021 ◽  
Author(s):  
Jozsef Bodis ◽  
Endre Sulyok ◽  
Akos Varnagy ◽  
Viktória Prémusz ◽  
Krisztina Godony ◽  
...  

Abstract BackgroundThis observational clinical study evaluated the expression levels and predictive values of some apoptosis-related genes in granulosa cells (GCs) and follicular fluid (FF) of women undergoing in vitro fertilization (IVF).Methods GCs and FF were obtained at oocyte retrieval from 31 consecutive patients with heterogeneous infertility diagnosis (age: 34.3±5.8 years, body mass index: 24.02±3.12 kg/m2, duration of infertility: 4.2±2.1 years). mRNA expression of pro-apoptotic (BAX, CASP3, CASP8) and anti-apoptotic (BCL2, AMH, AMHR, FSHR, LHR, CYP19A1) factors was determined by quantitative RT-PCR using ROCHE LightCycler 480. Results No significant difference in GC or FF mRNA expression of pro- and anti-apoptotic factors could be demonstrated between IVF patients with (9 patients) or without (22 patients) clinical pregnancy. Each transcript investigated was detected in FF, but their levels were markedly reduced and independent of those in GCs. The number of retrieved oocytes was positively associated with GC AMHR (r=0.393, p=0.029), but the day of embryo transfer was negatively associated with GC LHR (r=-0.414, p=0.020) and GC FSHR transcripts (r=-0.535, p=0.002). When pregnancy positive group was analysed separately the impact of apoptosis- related gene expressions on some selected measures of IVF success could be observed. Strong positive relationship was found between gene expression levels of pro- and anti-apoptotic factors in GCs.ConclusionOur study provides only marginal evidences for the apoptosis dependence of IVF outcome and suggests that the apoptosis process induces adaptive increases of the anti-apoptotic gene expression to attenuate apoptosis and to protect cell survival.


Sign in / Sign up

Export Citation Format

Share Document