scholarly journals Bacterial and plant produced lipids can exacerbate the Olive Quick Decline Syndrome caused by Xylella

2019 ◽  
Author(s):  
Valeria Scala ◽  
Nicoletta Pucci ◽  
Manuel Salustri ◽  
Vanessa Modesti ◽  
Alessia L’Aurora ◽  
...  

AbstractXylella fastidiosa is an insect vector-transmitted bacterial plant pathogen associated with severe diseases in a wide range of plants. In last decades, X. fastidiosa was detected in several European countries. Among X. fastidiosa subspecies, here we study X. fastidiosa subsp. pauca associated with the Olive Quick Decline Syndrome (OQDS) causing severe losses in Southern Italy. First, we collected Olea europaea L. (cv. Ogliarola salentina) samples in groves located in infected zones and uninfected zones. Secondly, the untargeted LC-TOF analysis of the lipid profiles of OQDS positive (+) and negative (-) plants showed a significant clustering of OQDS+ samples apart from OQDS-ones. Thirdly, using HPLC-MS/MS targeted methods and chemometric analysis, we identified a shortlist of 10 lipids significantly different in the infected versus healthy samples. Last, we observed a clear impact on X. fastidiosa subsp. pauca growth and biofilm formation in vitro liquid cultures supplemented with these compounds.Considering that growth and biofilm formation are primary ways by which X. fastidiosa causes disease, our results demonstrate that lipids produced as part of the plant’s immune response can exacerbate the disease. This is reminiscent of an allergic reaction in animal systems, offering the depression of plant immune response as a potential strategy for OQDS treatment.Author summaryGlobal trade and climate change are re-shaping the distribution map of pandemic pathogens. One major emerging concern is Xylella fastidiosa, a tropical bacterium recently introduced into Europe from America. Its impact has been dramatic: in the last 5-years only, Olive Quick Decline Syndrome (OQDS) has caused thousands of 200 years old olive trees to be felled in the southern Italy. Xylella fastidiosa through a tight coordination of the adherent biofilm and the planktonic states, invades the host systemically. The planktonic phase is correlated to low cell density and vessel colonization. Increase in cell density triggers a quorum sensing system based on cis 2-enoic fatty acids—diffusible signalling factors (DSF) that promote stickiness and biofilm. Xylem vessels are occluded by the combined effect of bacterial biofilm and plant defences (e.g. tyloses). This study provides novel insight on how X. fastidiosa subsp. pauca biology relates to the Olive Quick Decline Syndrome. We found that some class of lipids increase their amount in the infected olive tree. These lipid entities, provided to X. fastidiosa subsp. pauca behave as hormone-like molecules: modulating the dual phase, e.g. planktonic versus biofilm. Probably, part of these lipids represents a reaction of the plant to the bacterial contamination.

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Sedigheh Akbarnezhad Ghareh Lar ◽  
Nakisa Zarrabi Ahrabi ◽  
Yasin SarveAhrabi

Background: Acinetobacter bumanni is one of the most common opportunistic pathogens in health centers that is resistant to many antibiotics due to biofilm production. 1, 3, 4-oxadiazoles have a wide range of biological activities. Objectives: The aim of this research was to examine the impact of new 1, 3, 4-oxadiazole derivatives on the expression of biofilm-associated surface protein (Bap), playing an important role in promoting the biofilm formation ability of A. baumannii strains. Methods: Derivatives of 1, 3, 4-oxadiazole were synthesized through a one-step synthesis. A. baumannii strains were identified and isolated in the laboratory. The antimicrobial properties of the synthesized materials against the isolated strains were investigated. DNA, RNA, and cDNA were extracted, and the relative expression of BAP gene in A. baumannii isolates was evaluated by real-time polymerase chain reaction. Results: The compound with methoxyphenyl functional group with MIC = 62.50 mg/mL had the best inhibitory performance among all derivatives. Also, the combination of 4i reduced the expression of the Bap gene by about 24 times, but it had no effect on the expression of the 16srRNA housekeeping gene. Conclusions: 1, 3, 4-oxadiazole derivatives, especially the methoxyphenyl functional group, act as an inhibitor of bacterial biofilm formation and have the potential to be used in the pharmaceutical and biological industries.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1035
Author(s):  
Ugo Picciotti ◽  
Nada Lahbib ◽  
Valdete Sefa ◽  
Francesco Porcelli ◽  
Francesca Garganese

The Philaenus spumarius L. (Hemiptera Aphrophoridae) is a xylem-sap feeder vector that acquires Xylella fastidiosa subsp. pauca ST53 during feeding on infected plants. The bacterium is the plant pathogen responsible for olive quick decline syndrome that has decimated olive trees in Southern Italy. Damage originates mainly from the insect vector attitude that multiplies the pathogen potentialities propagating Xf in time and space. The principal action to manage insect-borne pathogens and to contain the disease spread consists in vector and transmission control. The analysis of an innovative and sustainable integrated pest management quantitative strategy that targets the vector and the infection by combining chemical and physical control means demonstrates that it is possible to stop the Xylella invasion. This review updates the available topics addressing vectors’ identification, bionomics, infection management, and induced disease by Xylella invasion to discuss major available tools to mitigate the damage consequent to the disease.


2019 ◽  
Vol 7 (12) ◽  
pp. 656 ◽  
Author(s):  
Cristina Cattò ◽  
Luca De Vincenti ◽  
Francesca Cappitelli ◽  
Giusy D’Attoma ◽  
Maria Saponari ◽  
...  

This study investigated in-vitro the non-lethal effects of N-acetylcysteine (NAC) on Xylella fastidiosa subspecies pauca strain De Donno (Xf-DD) biofilm. This strain was isolated from the olive trees affected by the olive quick decline syndrome in southern Italy. Xf-DD was first exposed to non-lethal concentrations of NAC from 0.05 to 1000 µM. Cell surface adhesion was dramatically reduced at 500 µM NAC (−47%), hence, this concentration was selected for investigating the effects of pre-, post- and co-treatments on biofilm physiology and structural development, oxidative homeostasis, and biofilm detachment. Even though 500 µM NAC reduced bacterial attachment to surfaces, compared to the control samples, it promoted Xf-DD biofilm formation by increasing: (i) biofilm biomass by up to 78% in the co-treatment, (ii) matrix polysaccharides production by up to 72% in the pre-treatment, and (iii) reactive oxygen species levels by 3.5-fold in the co-treatment. Xf-DD biofilm detachment without and with NAC was also investigated. The NAC treatment did not increase biofilm detachment, compared to the control samples. All these findings suggested that, at 500 µM, NAC diversified the phenotypes in Xf-DD biofilm, promoting biofilm formation (hyper-biofilm-forming phenotype) and discouraging biofilm detachment (hyper-attachment phenotype), while increasing oxidative stress level in the biofilm.


2010 ◽  
Vol 23 (10) ◽  
pp. 1356-1363 ◽  
Author(s):  
Subhadeep Chatterjee ◽  
Nabil Killiny ◽  
Rodrigo P. P. Almeida ◽  
Steven E. Lindow

Xylella fastidiosa must coordinately regulate a variety of traits contributing to biofilm formation, host plant and vector colonization, and transmission between plants. Traits such as production of extracellular polysaccharides (EPS), adhesins, extracellular enzymes, and pili are expressed in a cell-density-dependent fashion mediated by a cell-to-cell signaling system involving a fatty acid diffusible signaling factor (DSF). The expression of gene PD0279 (which has a GGDEF domain) is downregulated in the presence of DSF and may be involved in intracellular signaling by modulating the levels of cyclic di-GMP. PD0279, designated cyclic di-GMP synthase A (cgsA), is required for biofilm formation, plant virulence, and vector transmission. cgsA mutants exhibited a hyperadhesive phenotype in vitro and overexpressed gumJ, hxfA, hxfB, xadA, and fimA, which promote attachment of cells to surfaces and, hence, biofilm formation. The mutants were greatly reduced in virulence to grape albeit still transmissible by insect vectors, although at a reduced level compared with transmission rates of the wild-type strain, despite the fact that similar numbers of cells of the cgsA mutant were acquired by the insects from infected plants. High levels of EPS were measured in cgsA mutants compared with wild-type strains, and scanning electron microscopy analysis also revealed a thicker amorphous layer surrounding the mutants. Overexpression of cgsA in a cgsA-complemented mutant conferred the opposite phenotypes in vitro. These results suggest that decreases of cyclic di-GMP result from the accumulation of DSF as cell density increases, leading to a phenotypic transition from a planktonic state capable of colonizing host plants to an adhesive state that is insect transmissible.


2008 ◽  
Vol 74 (11) ◽  
pp. 3551-3558 ◽  
Author(s):  
Rebecca Munk Vejborg ◽  
Per Klemm

ABSTRACT Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle α-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive proteins may offer an attractive measure for reducing or delaying biofilm-associated infections.


2021 ◽  
Vol 22 (21) ◽  
pp. 12084
Author(s):  
Michał Śmiga ◽  
John W. Smalley ◽  
Paulina Ślęzak ◽  
Jason L. Brown ◽  
Klaudia Siemińska ◽  
...  

The non-enzymatic addition of glucose (glycation) to circulatory and tissue proteins is a ubiquitous pathophysiological consequence of hyperglycemia in diabetes. Given the high incidence of periodontitis and diabetes and the emerging link between these conditions, it is of crucial importance to define the basic virulence mechanisms employed by periodontopathogens such as Porphyromonas gingivalis in mediating the disease process. The aim of this study was to determine whether glycated proteins are more easily utilized by P. gingivalis to stimulate growth and promote the pathogenic potential of this bacterium. We analyzed the properties of three commonly encountered proteins in the periodontal environment that are known to become glycated and that may serve as either protein substrates or easily accessible heme sources. In vitro glycated proteins were characterized using colorimetric assays, mass spectrometry, far- and near-UV circular dichroism and UV–visible spectroscopic analyses and SDS-PAGE. The interaction of glycated hemoglobin, serum albumin and type one collagen with P. gingivalis cells or HmuY protein was examined using spectroscopic methods, SDS-PAGE and co-culturing P. gingivalis with human keratinocytes. We found that glycation increases the ability of P. gingivalis to acquire heme from hemoglobin, mostly due to heme sequestration by the HmuY hemophore-like protein. We also found an increase in biofilm formation on glycated collagen-coated abiotic surfaces. We conclude that glycation might promote the virulence of P. gingivalis by making heme more available from hemoglobin and facilitating bacterial biofilm formation, thus increasing P. gingivalis pathogenic potential in vivo.


Author(s):  
María Consuelo Latorre ◽  
María Jesús Pérez-Granda ◽  
Paul B Savage ◽  
Beatriz Alonso ◽  
Pablo Martín-Rabadán ◽  
...  

Abstract Background Ventilator-associated pneumonia is one of the most common nosocomial infections, caused mainly by bacterial/fungal biofilm. Therefore, it is necessary to develop preventive strategies to avoid biofilm formation based on new compounds. Objectives We performed an in vitro study to compare the efficacy of endotracheal tubes (ETTs) coated with the ceragenin CSA-131 and that of uncoated ETTs against the biofilm of clinical strains of Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Staphylococcus aureus (SA). Methods We applied an in vitro bench top model using coated and uncoated ETTs that were treated with three different clinical strains of PA, EC and SA for 5 days. After exposure to biofilm, ETTs were analysed for cfu count by culture of sonicate and total number of cells by confocal laser scanning microscopy. Results The median (IQR) cfu/mL counts of PA, EC and SA in coated and uncoated ETTs were, respectively, as follows: 1.00 × 101 (0.0–3.3 × 102) versus 3.32 × 109 (6.6 × 108–3.8 × 109), P < 0.001; 0.0 (0.0–5.4 × 103) versus 1.32 × 106 (2.3 × 103–5.0 × 107), P < 0.001; and 8.1 × 105 (8.5 × 101–1.4 × 109) versus 2.7 × 108 (8.6 × 106–1.6 × 1011), P = 0.058. The median (IQR) total number of cells of PA, EC and SA in coated and non-coated ETTs were, respectively, as follows: 11.0 [5.5–not applicable (NA)] versus 87.9 (60.5–NA), P = 0.05; 9.1 (6.7–NA) versus 62.6 (42.0–NA), P = 0.05; and 97.7 (94.6–NA) versus 187.3 (43.9–NA), P = 0.827. Conclusions We demonstrated significantly reduced biofilm formation in coated ETTs. However, the difference for SA was not statistically significant. Future clinical studies are needed to support our findings.


1998 ◽  
Vol 42 (4) ◽  
pp. 895-898 ◽  
Author(s):  
Silvia Schwank ◽  
Zarko Rajacic ◽  
Werner Zimmerli ◽  
Jürg Blaser

ABSTRACT The impact of bacterial adherence on antibiotic activity was analyzed with two isogenic strains of Staphylococcus epidermidis that differ in the features of their in vitro biofilm formation. The eradication of bacteria adhering to glass beads by amikacin, levofloxacin, rifampin, or teicoplanin was studied in an animal model and in a pharmacokinetically matched in vitro model. The features of S. epidermidis RP62A that allowed it to grow on surfaces in multiple layers promoted phenotypic resistance to antibiotic treatment, whereas strain M7 failed to accumulate, despite initial adherence on surfaces and growth in suspension similar to those for RP62A. Biofilms of S. epidermidis M7 were better eradicated than those of strain RP62A in vitro (46 versus 31%;P < 0.05) as well as in the animal model (39 versus 9%; P < 0.01).


2010 ◽  
Vol 124 (6) ◽  
pp. 594-598 ◽  
Author(s):  
C H Jang ◽  
H Park ◽  
Y B Cho ◽  
C H Choi

AbstractBackground and objective:Bacterial biofilm formation has been implicated in the high incidence of persistent otorrhoea after tympanostomy tube insertion. It has been suggested that the tube material may be an important factor in the persistence of such otorrhoea. Development of methicillin-resistant Staphylococcus aureus otorrhoea after tympanostomy tube placement is a growing concern. We evaluated the effect of using vancomycin and chitosan coated tympanostomy tubes on the incidence of methicillin-resistant Staphylococcus aureus biofilm formation in vitro.Materials and methods:Three sets each of vancomycin-coated silicone tubes (n = 5), commercial silver oxide coated silicone tubes (n = 5) and uncoated tympanostomy tubes (as controls; n = 5) were compared as regards resistance to methicillin-resistant Staphylococcus aureus biofilm formation after in vitro incubation.Results:Scanning electron microscopy showed that the surfaces of the silver oxide coated tubes supported the formation of thick biofilms with crusts, comparable to the appearance of the uncoated tubes. In contrast, the surface of the vancomycin-coated tympanostomy tubes was virtually devoid of methicillin-resistant Staphylococcus aureus biofilm.Conclusion:Vancomycin-coated tympanostomy tubes resist methicillin-resistant Staphylococcus aureus biofilm formation. Pending further study, such tubes show promise in assisting the control of methicillin-resistant Staphylococcus aureus biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document