Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements

2021 ◽  
pp. gr.275658.121
Author(s):  
Yuyun Zhang ◽  
Zijuan Li ◽  
Yu'e Zhang ◽  
Kande Lin ◽  
Yuan Peng ◽  
...  

More than 80% of the wheat genome consists of transposable elements (TEs), which act as one major driver of wheat genome evolution. However, their contributions to the regulatory evolution of wheat adaptations remain largely unclear. Here, we created genome-binding maps for 53 transcription factors (TFs) underlying environmental responses by leveraging DAP-seq in Triticum urartu, together with epigenomic profiles. Most TF-binding sites (TFBS) located distally from genes are embedded in TEs, whose functional relevance is supported by purifying selection and active epigenomic features. About 24% of the non-TE TFBS share significantly high sequence similarity with TE-embedded TFBS. These non-TE TFBS have almost no homologous sequences in non-Triticeae species and are potentially derived from Triticeae-specific TEs. The expansion of TE-derived TFBS linked to wheat-specific gene responses, suggesting TEs are an important driving force for regulatory innovations. Altogether, TEs have been significantly and continuously shaping regulatory networks related to wheat genome evolution and adaptation.

Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 947-957 ◽  
Author(s):  
John G Jelesko ◽  
Kristy Carter ◽  
Whitney Thompson ◽  
Yuki Kinoshita ◽  
Wilhelm Gruissem

Abstract Paralogous genes organized as a gene cluster can rapidly evolve by recombination between misaligned paralogs during meiosis, leading to duplications, deletions, and novel chimeric genes. To model unequal recombination within a specific gene cluster, we utilized a synthetic RBCSB gene cluster to isolate recombinant chimeric genes resulting from meiotic recombination between paralogous genes on sister chromatids. Several F1 populations hemizygous for the synthRBCSB1 gene cluster gave rise to Luc+ F2 plants at frequencies ranging from 1 to 3 × 10-6. A nonuniform distribution of recombination resolution sites resulted in the biased formation of recombinant RBCS3B/1B::LUC genes with nonchimeric exons. The positioning of approximately half of the mapped resolution sites was effectively modeled by the fractional length of identical DNA sequences. In contrast, the other mapped resolution sites fit an alternative model in which recombination resolution was stimulated by an abrupt transition from a region of relatively high sequence similarity to a region of low sequence similarity. Thus, unequal recombination between paralogous RBCSB genes on sister chromatids created an allelic series of novel chimeric genes that effectively resulted in the diversification rather than the homogenization of the synthRBCSB1 gene cluster.


2020 ◽  
Vol 375 (1795) ◽  
pp. 20190347 ◽  
Author(s):  
Vasavi Sundaram ◽  
Joanna Wysocka

Eukaryotic gene regulation is mediated by cis -regulatory elements, which are embedded within the vast non-coding genomic space and recognized by the transcription factors in a sequence- and context-dependent manner. A large proportion of eukaryotic genomes, including at least half of the human genome, are composed of transposable elements (TEs), which in their ancestral form carried their own cis -regulatory sequences able to exploit the host trans environment to promote TE transcription and facilitate transposition. Although not all present-day TE copies have retained this regulatory function, the preexisting regulatory potential of TEs can provide a rich source of cis -regulatory innovation for the host. Here, we review recent evidence documenting diverse contributions of TE sequences to gene regulation by functioning as enhancers, promoters, silencers and boundary elements. We discuss how TE-derived enhancer sequences can rapidly facilitate changes in existing gene regulatory networks and mediate species- and cell-type-specific regulatory innovations, and we postulate a unique contribution of TEs to species-specific gene expression divergence in pluripotency and early embryogenesis. With advances in genome-wide technologies and analyses, systematic investigation of TEs' cis -regulatory potential is now possible and our understanding of the biological impact of genomic TEs is increasing. This article is part of a discussion meeting issue ‘Crossroads between transposons and gene regulation’.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jan Deneweth ◽  
Yves Van de Peer ◽  
Vanessa Vermeirssen

Abstract Background Transposable elements (TE) make up a large portion of many plant genomes and are playing innovative roles in genome evolution. Several TEs can contribute to gene regulation by influencing expression of nearby genes as stress-responsive regulatory motifs. To delineate TE-mediated plant stress regulatory networks, we took a 2-step computational approach consisting of identifying TEs in the proximity of stress-responsive genes, followed by searching for cis-regulatory motifs in these TE sequences and linking them to known regulatory factors. Through a systematic meta-analysis of RNA-seq expression profiles and genome annotations, we investigated the relation between the presence of TE superfamilies upstream, downstream or within introns of nearby genes and the differential expression of these genes in various stress conditions in the TE-poor Arabidopsis thaliana and the TE-rich Solanum lycopersicum. Results We found that stress conditions frequently expressed genes having members of various TE superfamilies in their genomic proximity, such as SINE upon proteotoxic stress and Copia and Gypsy upon heat stress in A. thaliana, and EPRV and hAT upon infection, and Harbinger, LINE and Retrotransposon upon light stress in S. lycopersicum. These stress-specific gene-proximal TEs were mostly located within introns and more detected near upregulated than downregulated genes. Similar stress conditions were often related to the same TE superfamily. Additionally, we detected both novel and known motifs in the sequences of those TEs pointing to regulatory cooption of these TEs upon stress. Next, we constructed the regulatory network of TFs that act through binding these TEs to their target genes upon stress and discovered TE-mediated regulons targeted by TFs such as BRB/BPC, HD, HSF, GATA, NAC, DREB/CBF and MYB factors in Arabidopsis and AP2/ERF/B3, NAC, NF-Y, MYB, CXC and HD factors in tomato. Conclusions Overall, we map TE-mediated plant stress regulatory networks using numerous stress expression profile studies for two contrasting plant species to study the regulatory role TEs play in the response to stress. As TE-mediated gene regulation allows plants to adapt more rapidly to new environmental conditions, this study contributes to the future development of climate-resilient plants.


2019 ◽  
Vol 70 (15) ◽  
pp. 3765-3780 ◽  
Author(s):  
Yufei Xiong ◽  
Ye Ren ◽  
Wang Li ◽  
Fengsheng Wu ◽  
Wenjie Yang ◽  
...  

AbstractStarch and storage proteins, the primary storage substances of cereal endosperm, are a major source of food for humans. However, the transcriptional regulatory networks of the synthesis and accumulation of storage substances remain largely unknown. Here, we identified a rice endosperm-specific gene, NF-YC12, that encodes a putative nuclear factor-Y transcription factor subunit C. NF-YC12 is expressed in the aleurone layer and starchy endosperm during grain development. Knockout of NF-YC12 significantly decreased grain weight as well as altering starch and protein accumulation and starch granule formation. RNA-sequencing analysis revealed that in the nf-yc12 mutant genes related to starch biosynthesis and the metabolism of energy reserves were enriched in the down-regulated category. In addition, starch and protein contents in seeds differed between NF-YC12-overexpression lines and the wild-type. NF-YC12 was found to interact with NF-YB1. ChIP-qPCR and yeast one-hybrid assays showed that NF-YC12 regulated the rice sucrose transporter OsSUT1 in coordination with NF-YB1 in the aleurone layer. In addition, NF-YC12 was directly bound to the promoters of FLO6 (FLOURY ENDOSPERM6) and OsGS1;3 (glutamine synthetase1) in developing endosperm. This study demonstrates a transcriptional regulatory network involving NF-YC12, which coordinates multiple pathways to regulate endosperm development and the accumulation of storage substances in rice seeds.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ursula Oggenfuss ◽  
Thomas Badet ◽  
Thomas Wicker ◽  
Fanny E Hartmann ◽  
Nikhil Kumar Singh ◽  
...  

Genome evolution is driven by the activity of transposable elements (TEs). The spread of TEs can have deleterious effects including the destabilization of genome integrity and expansions. However, the precise triggers of genome expansions remain poorly understood because genome size evolution is typically investigated only among deeply divergent lineages. Here, we use a large population genomics dataset of 284 individuals from populations across the globe of Zymoseptoria tritici, a major fungal wheat pathogen. We built a robust map of genome-wide TE insertions and deletions to track a total of 2456 polymorphic loci within the species. We show that purifying selection substantially depressed TE frequencies in most populations, but some rare TEs have recently risen in frequency and likely confer benefits. We found that specific TE families have undergone a substantial genome-wide expansion from the pathogen’s center of origin to more recently founded populations. The most dramatic increase in TE insertions occurred between a pair of North American populations collected in the same field at an interval of 25 years. We find that both genome-wide counts of TE insertions and genome size have increased with colonization bottlenecks. Hence, the demographic history likely played a major role in shaping genome evolution within the species. We show that both the activation of specific TEs and relaxed purifying selection underpin this incipient expansion of the genome. Our study establishes a model to recapitulate TE-driven genome evolution over deeper evolutionary timescales.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Mohamed Ramadan ◽  
Muna Alariqi ◽  
Yizan Ma ◽  
Yanlong Li ◽  
Zhenping Liu ◽  
...  

Abstract Background Upland cotton (Gossypium hirsutum), harboring a complex allotetraploid genome, consists of A and D sub-genomes. Every gene has multiple copies with high sequence similarity that makes genetic, genomic and functional analyses extremely challenging. The recent accessibility of CRISPR/Cas9 tool provides the ability to modify targeted locus efficiently in various complicated plant genomes. However, current cotton transformation method targeting one gene requires a complicated, long and laborious regeneration process. Hence, optimizing strategy that targeting multiple genes is of great value in cotton functional genomics and genetic engineering. Results To target multiple genes in a single experiment, 112 plant development-related genes were knocked out via optimized CRISPR/Cas9 system. We optimized the key steps of pooled sgRNAs assembly method by which 116 sgRNAs pooled together into 4 groups (each group consisted of 29 sgRNAs). Each group of sgRNAs was compiled in one PCR reaction which subsequently went through one round of vector construction, transformation, sgRNAs identification and also one round of genetic transformation. Through the genetic transformation mediated Agrobacterium, we successfully generated more than 800 plants. For mutants identification, Next Generation Sequencing technology has been used and results showed that all generated plants were positive and all targeted genes were covered. Interestingly, among all the transgenic plants, 85% harbored a single sgRNA insertion, 9% two insertions, 3% three different sgRNAs insertions, 2.5% mutated sgRNAs. These plants with different targeted sgRNAs exhibited numerous combinations of phenotypes in plant flowering tissues. Conclusion All targeted genes were successfully edited with high specificity. Our pooled sgRNAs assembly offers a simple, fast and efficient method/strategy to target multiple genes in one time and surely accelerated the study of genes function in cotton.


Author(s):  
Angélique Buton ◽  
Louis-Marie Bobay

Abstract Homologous recombination is a key pathway found in nearly all bacterial taxa. The recombination complex allows bacteria to repair DNA double strand breaks but also promotes adaption through the exchange of DNA between cells. In Proteobacteria, this process is mediated by the RecBCD complex, which relies on the recognition of a DNA motif named Chi to initiate recombination. The Chi motif has been characterized in Escherichia coli and analogous sequences have been found in several other species from diverse families, suggesting that this mode of action is widespread across bacteria. However, the sequences of Chi-like motifs are known for only five bacterial species: E. coli, Haemophilus influenzae, Bacillus subtilis, Lactococcus lactis and Staphylococcus aureus. In this study we detected putative Chi motifs in a large dataset of Proteobacteria and we identified four additional motifs sharing high sequence similarity and similar properties to the Chi motif of E. coli in 85 species of Proteobacteria. Most Chi motifs were detected in Enterobacteriaceae and this motif appears well conserved in this family. However, we did not detect Chi motifs for the majority of Proteobacteria, suggesting that different motifs are used in these species. Altogether these results substantially expand our knowledge on the evolution of Chi motifs and on the recombination process in bacteria.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1692
Author(s):  
Li Gu ◽  
Ting Su ◽  
Ming-Tai An ◽  
Guo-Xiong Hu

Oreocharis esquirolii, a member of Gesneriaceae, is known as Thamnocharis esquirolii, which has been regarded a synonym of the former. The species is endemic to Guizhou, southwestern China, and is evaluated as vulnerable (VU) under the International Union for Conservation of Nature (IUCN) criteria. Until now, the sequence and genome information of O. esquirolii remains unknown. In this study, we assembled and characterized the complete chloroplast (cp) genome of O. esquirolii using Illumina sequencing data for the first time. The total length of the cp genome was 154,069 bp with a typical quadripartite structure consisting of a pair of inverted repeats (IRs) of 25,392 bp separated by a large single copy region (LSC) of 85,156 bp and a small single copy region (SSC) of18,129 bp. The genome comprised 114 unique genes with 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. Thirty-one repeat sequences and 74 simple sequence repeats (SSRs) were identified. Genome alignment across five plastid genomes of Gesneriaceae indicated a high sequence similarity. Four highly variable sites (rps16-trnQ, trnS-trnG, ndhF-rpl32, and ycf 1) were identified. Phylogenetic analysis indicated that O. esquirolii grouped together with O. mileensis, supporting resurrection of the name Oreocharis esquirolii from Thamnocharisesquirolii. The complete cp genome sequence will contribute to further studies in molecular identification, genetic diversity, and phylogeny.


2018 ◽  
Vol 25 (2) ◽  
pp. 130-145 ◽  
Author(s):  
Heewon Park ◽  
Teppei Shimamura ◽  
Seiya Imoto ◽  
Satoru Miyano

2016 ◽  
Vol 198 (9) ◽  
pp. 1393-1400 ◽  
Author(s):  
Guangyu E. Chen ◽  
Andrew Hitchcock ◽  
Philip J. Jackson ◽  
Roy R. Chaudhuri ◽  
Mark J. Dickman ◽  
...  

ABSTRACTThe major photopigment of the cyanobacteriumAcaryochloris marinais chlorophylld, while its direct biosynthetic precursor, chlorophylla, is also present in the cell. These pigments, along with the majority of chlorophylls utilized by oxygenic phototrophs, carry an ethyl group at the C-8 position of the molecule, having undergone reduction of a vinyl group during biosynthesis. Two unrelated classes of 8-vinyl reductase involved in the biosynthesis of chlorophylls are known to exist, BciA and BciB. The genome ofAcaryochloris marinacontains open reading frames (ORFs) encoding proteins displaying high sequence similarity to BciA or BciB, although they are annotated as genes involved in transcriptional control (nmrA) and methanogenesis (frhB), respectively. These genes were introduced into an 8-vinyl chlorophylla-producing ΔbciBstrain ofSynechocystissp. strain PCC 6803, and both were shown to restore synthesis of the pigment with an ethyl group at C-8, demonstrating their activities as 8-vinyl reductases. We propose thatnmrAandfrhBbe reassigned asbciAandbciB, respectively; transcript and proteomic analysis ofAcaryochloris marinareveal that bothbciAandbciBare expressed and their encoded proteins are present in the cell, possibly in order to ensure that all synthesized chlorophyll pigment carries an ethyl group at C-8. Potential reasons for the presence of two 8-vinyl reductases in this strain, which is unique for cyanobacteria, are discussed.IMPORTANCEThe cyanobacteriumAcaryochloris marinais the best-studied phototrophic organism that uses chlorophylldfor photosynthesis. Unique among cyanobacteria sequenced to date, its genome contains ORFs encoding two unrelated enzymes that catalyze the reduction of the C-8 vinyl group of a precursor molecule to an ethyl group. Carrying a reduced C-8 group may be of particular importance to organisms containing chlorophylld. Plant genomes also contain orthologs of both of these genes; thus, the bacterial progenitor of the chloroplast may also have contained bothbciAandbciB.


Sign in / Sign up

Export Citation Format

Share Document