Gauge fields on a lattice. II. Gauge-invariant Ising model

1975 ◽  
Vol 11 (8) ◽  
pp. 2098-2103 ◽  
Author(s):  
R. Balian ◽  
J. M. Drouffe ◽  
C. Itzykson
1990 ◽  
Vol 05 (16) ◽  
pp. 3247-3264
Author(s):  
THOMAS DOMEIJ

We present a method based on BRST techniques for how to obtain the conventional equations for symmetric tensor gauge fields which describe free massless particles of arbitrary integer spin. We do so in a wave function representation in a flat space-time background of any dimension. A fairly straightforward way is also presented for how to obtain the equations from a gauge invariant Lagrangian of the form [Formula: see text].


1990 ◽  
Vol 05 (03) ◽  
pp. 175-182 ◽  
Author(s):  
T. D. KIEU

The path-integral functional of chiral gauge theories with background gauge potentials are derived in the holomorphic representation. Justification is provided, from first quantum mechanical principles, for the appearance of a functional phase factor of the gauge fields in order to maintain the gauge invariance. This term is shown to originate either from the Berry phase of the first-quantized hamiltonians or from the normal ordering of the second-quantized hamiltonian with respect to the Dirac in-vacuum. The quantization of the chiral Schwinger model is taken as an example.


1996 ◽  
Vol 11 (13) ◽  
pp. 1081-1093 ◽  
Author(s):  
SERGEI V. SHABANOV

We suggest a new (dynamical) Abelian projection of the lattice QCD. It contains no gauge condition imposed on gauge fields so that Gribov copying is avoided. Configurations of gauge fields that turn into monopoles in the Abelian projection can be classified in a gauge-invariant way. In the continuum limit, the theory respects the Lorentz invariance. A similar dynamical reduction of the gauge symmetry is proposed for studies of gauge-variant correlators (like a gluon propagator) in the lattice QCD. Though the procedure is harder for numerical simulations, it is free of gauge-fixing artifacts, like the Gribov horizon and copies.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Emel Altas ◽  
Ercan Kilicarslan ◽  
Bayram Tekin

AbstractWe construct the gauge-invariant electric and magnetic charges in Yang–Mills theory coupled to cosmological general relativity (or any other geometric gravity), extending the flat spacetime construction of Abbott and Deser (Phys Lett B 116:259–263, 1982). For non-vanishing background gauge fields, the charges receive non-trivial contribution from the gravity part. In addition, we study the constraints on the first order perturbation theory and establish the conditions for linearization instability: that is the validity of the first order perturbation theory.


2019 ◽  
Vol 8 (1) ◽  
pp. 11-15
Author(s):  
Suhaivi Hamdan ◽  
Erwin Erwin ◽  
Saktioto Saktioto

Kuat medan tensor yang ditransformasikan secara homogen terhadap perluasan transformasi gauge memenuhi bentuk sifat invarian gauge. Analisa invarian gauge dalam bantuk integeralnya memperlihatkan hubungan dengan koordinat ruang-waktu yang menunjukan bentuk baru dari topologi Lagrangian. Sifat invarian dari bentuk Pontryagin-Chern terhadap kuat medan tensor non-Abelian dan lemma Poincare dapat digunakan untuk mengkontruksi bentuk ChSAS yang menunjukan sifat quasi-invarian dibawah transformasi gauge. Artikel ini bertujuan untuk membuktikan bahwa kuat medan tensor Yang-Mills dari bentuk ChSAS memilik variasi gauge anomali non-Abelian seperti pada bentuk Chern-Simons. Integrasi bentuk ChSAS menghasilkan dimensi-4, 6 dan 8 variasi gauge genap dan memperlihatkan hubungan dengan bentuk Chern-Simons dimensi-3 dan 5 untuk variasi gauge ganjil. Bentuk ChSAS memperlihatkan variabel lebih kompleks yang menujukan sifat berosilasi. Tensors field strength transformation homogeneously to extend gauge transformation fulfilling charateristic gauge invariant form. Analysis gauge invariant in integral form shows corresponding with space-time coordinate that prove new topology Lagrangians form. Furthermore invariant charateristic of Pontryagin-Chern to non-Abelian tensor gauge fields and lemma Poincare used to contruct ChSAS forms which shows quasi-inavriant under gauge transformation. This paper aims to prove Yang-Mills tensor gauge field of ChSAS forms has variation non-Abelian anomaly like Chern-Simons forms. The integration ChSAS forms resulted 4, 6 and 8-dimensional even gauge variation which also correspond 3 and 5-dimensional odd gauge variation Chern-Simons forms. The ChSAS forms also showed complex variable and osilation.  Keywords: Pontryagin-Chern, Kuat medan tensor non-Abelian, Chern-Simans-Antoniadis-Savvidy, Anomali Non-Abelian.


Science ◽  
2020 ◽  
Vol 367 (6482) ◽  
pp. 1128-1130 ◽  
Author(s):  
Alexander Mil ◽  
Torsten V. Zache ◽  
Apoorva Hegde ◽  
Andy Xia ◽  
Rohit P. Bhatt ◽  
...  

In the fundamental laws of physics, gauge fields mediate the interaction between charged particles. An example is the quantum theory of electrons interacting with the electromagnetic field, based on U(1) gauge symmetry. Solving such gauge theories is in general a hard problem for classical computational techniques. Although quantum computers suggest a way forward, large-scale digital quantum devices for complex simulations are difficult to build. We propose a scalable analog quantum simulator of a U(1) gauge theory in one spatial dimension. Using interspecies spin-changing collisions in an atomic mixture, we achieve gauge-invariant interactions between matter and gauge fields with spin- and species-independent trapping potentials. We experimentally realize the elementary building block as a key step toward a platform for quantum simulations of continuous gauge theories.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 633
Author(s):  
Desmond A. Johnston ◽  
Ranasinghe P. K. C. M. Ranasinghe

A characteristic feature of the 3 d plaquette Ising model is its planar subsystem symmetry. The quantum version of this model has been shown to be related via a duality to the X-Cube model, which has been paradigmatic in the new and rapidly developing field of fractons. The relation between the 3 d plaquette Ising and the X-Cube model is similar to that between the 2 d quantum transverse spin Ising model and the Toric Code. Gauging the global symmetry in the case of the 2 d Ising model and considering the gauge invariant sector of the high temperature phase leads to the Toric Code, whereas gauging the subsystem symmetry of the 3 d quantum transverse spin plaquette Ising model leads to the X-Cube model. A non-standard dual formulation of the 3 d plaquette Ising model which utilises three flavours of spins has recently been discussed in the context of dualising the fracton-free sector of the X-Cube model. In this paper we investigate the classical spin version of this non-standard dual Hamiltonian and discuss its properties in relation to the more familiar Ashkin–Teller-like dual and further related dual formulations involving both link and vertex spins and non-Ising spins.


2014 ◽  
Vol 29 (03n04) ◽  
pp. 1450027 ◽  
Author(s):  
IGNATIOS ANTONIADIS ◽  
GEORGE SAVVIDY

We present a general analysis of gauge invariant, exact and metric independent forms which can be constructed using higher-rank field-strength tensors. The integrals of these forms over the corresponding space–time coordinates provides new topological Lagrangians. With these Lagrangians one can define gauge field theories which generalize the Chern–Simons quantum field theory. We also present explicit expressions for the potential gauge anomalies associated with the tensor gauge fields and classify all possible anomalies that can appear in lower dimensions.


2001 ◽  
Vol 15 (28n30) ◽  
pp. 4013-4016 ◽  
Author(s):  
I. Kanazawa

It is proposed that the collective modes around the hole for k~(π,0) in underdoped cuprates might correspond to massive gauge fields [Formula: see text], which are introduced by the gauge-invariant carrieron (GIC) model.


Sign in / Sign up

Export Citation Format

Share Document