scholarly journals Preferential corrosion of coherent twin boundaries in pure nickel under cathodic charging

2019 ◽  
Vol 3 (6) ◽  
Author(s):  
Mengying Liu ◽  
Matteo Seita ◽  
Ta Duong ◽  
Winson C. H. Kuo ◽  
Michael J. Demkowicz
Author(s):  
P.E. Batson ◽  
C.R.M. Grovenor ◽  
D.A. Smith ◽  
C. Wong

In this work As doped polysilicon was deposited onto (100) silicon wafers by APCVD at 660°C from a silane-arsine mixture, followed by a ten minute anneal at 1000°C, and in one case a further ten minute anneal at 700°C. Specimens for TEM and STEM analysis were prepared by chemical polishing. The microstructure, which is unchanged by the final 700°C anneal,is shown in Figure 1. It consists of numerous randomly oriented grains many of which contain twins.X-ray analysis was carried out in a VG HB5 STEM. As K α x-ray counts were collected from STEM scans across grain and twin boundaries, Figures 2-4. The incident beam size was about 1.5nm in diameter, and each of the 20 channels in the plots was sampled from a 1.6nm length of the approximately 30nm line scan across the boundary. The bright field image profile along the scanned line was monitored during the analysis to allow correlation between the image and the x-ray signal.


Author(s):  
J. W. Matthews ◽  
W. M. Stobbs

Many high-angle grain boundaries in cubic crystals are thought to be either coincidence boundaries (1) or coincidence boundaries to which grain boundary dislocations have been added (1,2). Calculations of the arrangement of atoms inside coincidence boundaries suggest that the coincidence lattice will usually not be continuous across a coincidence boundary (3). There will usually be a rigid displacement of the lattice on one side of the boundary relative to that on the other. This displacement gives rise to a stacking fault in the coincidence lattice.Recently, Pond (4) and Smith (5) have measured the lattice displacement at coincidence boundaries in aluminum. We have developed (6) an alternative to the measuring technique used by them, and have used it to find two of the three components of the displacement at {112} lateral twin boundaries in gold. This paper describes our method and presents a brief account of the results we have obtained.


Author(s):  
J. L. Brimhall ◽  
H. E. Kissinger ◽  
B. Mastel

Some information on the size and density of voids that develop in several high purity metals and alloys during irradiation with neutrons at elevated temperatures has been reported as a function of irradiation parameters. An area of particular interest is the nucleation and early growth stage of voids. It is the purpose of this paper to describe the microstructure in high purity nickel after irradiation to a very low but constant neutron exposure at three different temperatures.Annealed specimens of 99-997% pure nickel in the form of foils 75μ thick were irradiated in a capsule to a total fluence of 2.2 × 1019 n/cm2 (E > 1.0 MeV). The capsule consisted of three temperature zones maintained by heaters and monitored by thermocouples at 350, 400, and 450°C, respectively. The temperature was automatically dropped to 60°C while the reactor was down.


Author(s):  
M. A. Kirk ◽  
M. C. Baker ◽  
B. J. Kestel ◽  
H. W. Weber

It is well known that a number of compound superconductors with the A15 structure undergo a martensite transformation when cooled to the superconducting state. Nb3Sn is one of those compounds that transforms, at least partially, from a cubic to tetragonal structure near 43 K. To our knowledge this transformation in Nb3Sn has not been studied by TEM. In fact, the only low temperature TEM study of an A15 material, V3Si, was performed by Goringe and Valdre over 20 years ago. They found the martensite structure in some foil areas at temperatures between 11 and 29 K, accompanied by faults that consisted of coherent twin boundaries on {110} planes. In pursuing our studies of irradiation defects in superconductors, we are the first to observe by TEM a similar martensite structure in Nb3Sn.Samples of Nb3Sn suitable for TEM studies have been produced by both a liquid solute diffusion reaction and by sputter deposition of thin films.


Author(s):  
A.H. Advani ◽  
L.E. Murr ◽  
D.J. Matlock ◽  
W.W. Fisher ◽  
P.M. Tarin ◽  
...  

Coherent annealing-twin boundaries are constant structure and energy interfaces with an average interfacial free energy of ∼19mJ/m2 versus ∼210 and ∼835mJ/m2 for incoherent twins and “regular” grain boundaries respectively in 304 stainless steels (SS). Due to their low energy, coherent twins form carbides about a factor of 100 slower than grain boundaries, and limited work has also shown differences in Cr-depletion (sensitization) between twin versus grain boundaries. Plastic deformation, may, however, alter the kinetics and thermodynamics of twin-sensitization which is not well understood. The objective of this work was to understand the mechanisms of carbide precipitation and Cr-depletion on coherent twin boundaries in deformed SS. The research is directed toward using this invariant structure and energy interface to understand and model the role of interfacial characteristics on deformation-induced sensitization in SS. Carbides and Cr-depletion were examined on a 20%-strain, 0.051%C-304SS, heat treated to 625°C-4.5h, as described elsewhere.


Author(s):  
C.M. Teng ◽  
T.F. Kelly ◽  
J.P. Zhang ◽  
H.M. Lin ◽  
Y.W. Kim

Spherical submicron particles of materials produced by electrohydrodynamic (EHD) atomization have been used to study a variety of materials processes including nucleation of alternative crystallization phases in iron-nickel and nickel-chromium alloys, amorphous solidification in submicron droplets of pure metals, and quasi-crystal formation in nickel-chromium alloys. Some experiments on pure nickel, nickel oxide single crystals, the nickel/nickel(II) oxide interface, and grain boundaries in nickel monoxide have been performed by STEM. For these latter studies, HREM is the most direct approach to obtain particle crystal structures at the atomic level. Grain boundaries in nickel oxide have also been investigated by HREM. In this paper, we present preliminary results of HREM observations of NiO growth on submicron spheres of pure nickel.Small particles of pure nickel were prepared by EHD atomization. For the study of pure nickel, 0.5 mm diameter pure nickel wire (99.9975%) is sprayed directly in the EHD process. The liquid droplets solidify in free-flight through a vacuum chamber operated at about 10-7 torr.


Alloy Digest ◽  
1981 ◽  
Vol 30 (9) ◽  

Abstract KANTHAL 70 alloy was designed to provide a high positive temperature coefficient to electrical resistance comparable with that of pure nickel; however, it has much higher electrical resistivity than pure nickel. This makes it useful as a voltage regulator when placed in series with another electrical device across a fluctuating voltage source. Kanthal 70 has a maximum recommended operating temperature of 600 C and is used widely in resistance thermometers and in various appliance and automotive applications. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-270. Producer or source: The Kanthal Corporation.


1994 ◽  
Vol 30 (10) ◽  
pp. 1311-1315 ◽  
Author(s):  
Th. Kehagias ◽  
Ph. Komninou ◽  
G.P. Dimitrakopulos ◽  
J.G. Antonopoulos ◽  
Th. Karakostas

Sign in / Sign up

Export Citation Format

Share Document