Quantitative basis for the rocking-curve measurement of preferred orientation in polycrystalline thin films

2003 ◽  
Vol 36 (3) ◽  
pp. 890-897 ◽  
Author(s):  
H. Toraya ◽  
H. Hibino ◽  
T. Ida ◽  
N. Kuwano

A quantitative basis for the rocking-curve measurement of the preferred orientation in polycrystalline thin films is presented. Gaussian functions are used for modeling the density distribution of the normals to the crystal plane around the normal to the specimen surface. An intensity formula for the rocking curve is derived from the kinematical theory applied to the case of asymmetric Bragg reflection. The density distribution is determined by the least-squares fit of a theoretical rocking curve to the observed curve, and a volume fraction of crystallites, whose normals to the crystal plane are present within a defined angular range, can be obtained from it. AlN and Au polycrystalline thin films were used for testing the present procedure. Parameter values of the model function, refined using both synchrotron radiation and laboratory X-rays, agree well with each other within the experimental errors although these intensity data sets were collected under different experimental conditions in instrumentation and wavelength. A distribution of depth-dependent preferred orientation in the AlN thin film was revealed by using double-layer and multiple-layer models. A very small degree of preferred orientation in Au thin films could also be measured. Parallel-beam optics and integrated intensities instead of peak height intensities are important for reliable rocking curve measurement.

2004 ◽  
Vol 443-444 ◽  
pp. 145-150
Author(s):  
H. Toraya ◽  
H. Hibino ◽  
Takashi Ida

A quantitative basis for rocking curve measurements of preferentially oriented polycrystalline thin films is presented. The Gaussian function is used for modeling the preferred orientation of crystallites around the plane normal of the specimen surface. A theoretical rocking curve is fitted to the observed curve by the least-squares method, and the degree of preferred orientation, given in volume fraction, can be derived from a refined preferred orientation parameter of the distribution function even when the preferred orientation is very small. Uses of diffractometers equipped with parallel-beam optics and the integrated intensity rather than peak intensity are important for reliable rocking curve measurement.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


Author(s):  
D J H Cockayne ◽  
D R McKenzie

The study of amorphous and polycrystalline materials by obtaining radial density functions G(r) from X-ray or neutron diffraction patterns is a well-developed technique. We have developed a method for carrying out the same technique using electron diffraction in a standard TEM. It has the advantage that studies can be made of thin films, and on regions of specimen too small for X-ray and neutron studies. As well, it can be used to obtain nearest neighbour distances and coordination numbers from the same region of specimen from which HREM, EDS and EELS data is obtained.The reduction of the scattered intensity I(s) (s = 2sinθ/λ ) to the radial density function, G(r), assumes single and elastic scattering. For good resolution in r, data must be collected to high s. Previous work in this field includes pioneering experiments by Grigson and by Graczyk and Moss. In our work, the electron diffraction pattern from an amorphous or polycrystalline thin film is scanned across the entrance aperture to a PEELS fitted to a conventional TEM, using a ramp applied to the post specimen scan coils. The elastically scattered intensity I(s) is obtained by selecting the elastically scattered electrons with the PEELS, and collecting directly into the MCA. Figure 1 shows examples of I(s) collected from two thin ZrN films, one polycrystalline and one amorphous, prepared by evaporation while under nitrogen ion bombardment.


1992 ◽  
Vol 7 (11) ◽  
pp. 3065-3071 ◽  
Author(s):  
Peir-Yung Chu ◽  
Isabelle Campion ◽  
Relva C. Buchanan

Phase transformation and preferred orientation in ZrO2 thin films, deposited on Si(111) and Si(100) substrates, and prepared by heat treatment from carboxylate solution precursors were investigated. The deposited films were amorphous below 450 °C, transforming gradually to the tetragonal and monoclinic phases on heating. The monoclinic phase developed from the tetragonal phase displacively, and exhibited a strong (111) preferred orientation at temperature as low as 550 °C. The degree of preferred orientation and the tetragonal-to-monoclinic phase transformation were controlled by heating rate, soak temperature, and time. Interfacial diffusion into the film from the Si substrate was negligible at 700 °C and became significant only at 900 °C, but for films thicker than 0.5 μm, overall preferred orientation exceeded 90%.


1997 ◽  
Vol 296 (1-2) ◽  
pp. 114-117 ◽  
Author(s):  
O. Pesty ◽  
P. Canet ◽  
F. Lalande ◽  
H. Carchano ◽  
D. Lollman

2021 ◽  
Vol 23 (3) ◽  
pp. 2368-2376
Author(s):  
A. Di Trolio ◽  
A. Amore Bonapasta ◽  
C. Barone ◽  
A. Leo ◽  
G. Carapella ◽  
...  

Co doping increases the ZnO resistivity (ρ) at high T (HT), whereas it has an opposite effect at low T (LT). H balances the Co effects by neutralizing the ρ increase at HT and strengthening its decrease at LT.


1988 ◽  
Vol 32 ◽  
pp. 105-114 ◽  
Author(s):  
H. Schwenke ◽  
W. Berneike ◽  
J. Knoth ◽  
U. Weisbrod

AbstractThe total reflection of X-rays is mainly determined by three parameters , that is the orltical angle, the reflectivity and the penetration depth. For X-ray fluorescence analysis the respective characteristic features can be exploited in two rather different fields of application. In the analysis of trace elements in samples placed as thin films on optical flats, detection limits as low as 2 pg or 0.05 ppb, respectively, have been obtained. In addition, a penetration depth in the nanometer regime renders Total Reflection XRF an inherently sensitive method for the elemental analysis of surfaces. This paper outlines the main physical and constructional parameters for instrumental design and quantitation in both branches of TXRF.


Sign in / Sign up

Export Citation Format

Share Document