Microstructural mapping of C60 phase transformation into disordered graphite at high pressure, using X-ray diffraction microtomography

2010 ◽  
Vol 44 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Michelle Álvarez-Murga ◽  
Pierre Bleuet ◽  
Leonel Marques ◽  
Christophe Lepoittevin ◽  
Nathalie Boudet ◽  
...  

An extended use of synchrotron-based X-ray diffraction microtomography (XRD-µCT) to study simultaneously the phase distribution and microstructure in phase-transformation processes is proposed. This three-dimensional non-invasive imaging approach has been applied to understand the phase transformation of C60 rhombohedral polymer (C60R) into disordered graphite (DG) at high pressure and high temperature. The heterogeneous sample was synthesized (5 GPa, 1100 K) using a Paris–Edinburgh cell and selective image reconstructions were achieved for all different phases present in this sample. The XRD-µCT analysis evidences elongated DG domains with a fiber texture where nested (002)DGplanes show ±70° preferential orientation relative to the compression axis. In contrast C60R domains are found to be small and spotty, preferentially in the middle of the sample. The parent and product phases are mutually interpenetrative and exhibit a crystallographic relationship. This study evidences that formation of (002)DGplanes occurs parallel to {111}C60Cpseudo-cubic planes. Among these four possible alignments, uniaxial pressure favors one [111]C60Cdirection. Transmission electron microscopy observations validate these nondestructive XRD-µCT results.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


2015 ◽  
Vol 48 (4) ◽  
pp. 1072-1079 ◽  
Author(s):  
Geoffrey K. Feld ◽  
Michael Heymann ◽  
W. Henry Benner ◽  
Tommaso Pardini ◽  
Ching-Ju Tsai ◽  
...  

X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introductionviaa translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructed of low-Zplastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. The benefits and limitations of these low-Zfixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.


2012 ◽  
Vol 706-709 ◽  
pp. 741-744 ◽  
Author(s):  
Akio Kira ◽  
Ryuichi Tomoshige ◽  
Kazuyuki Hokamoto ◽  
Masahiro Fujita

The various techniques of phase transformation of the material have been proposed by many researchers. We have developed several devices to generate the ultrahigh pressure by using high explosive. One of them uses metal jets. It is expected that the ultrahigh pressure occurs by the head-on collision between metal jets, because the velocity of the metal jet is very high. By mixing a powdered material with metal jets, the pressure of the material becomes high. The purpose of this study is to transform the phase of the powdered material by using this high pressure. The powders of the graphite and hBN were applied. The synthesis to the diamond and cBN was confirmed by X-ray diffraction (XRD). In this paper, the mechanism of the generation of the ultrahigh pressure is explained and the results of the observation of the powder by using scanning transmission electron microscope (STEM) are reported.


2017 ◽  
Vol 31 (06) ◽  
pp. 1750037
Author(s):  
M. Ghali ◽  
A. M. Eissa ◽  
M. M. Mosaad

In this paper, we give a microscopic view concerning influence of the growth conditions on the physical properties of nanocrystals (NCs) thin films made of CdS, prepared using chemical bath deposition CBD technique. We show a crystalline phase transformation of CdS NCs from hexagonal wurtzite (W) structure to cubic zincblende (ZB) when the growth conditions change, particularly the solution pH values. This effect was confirmed using X-ray diffraction (XRD), transmission electron microscopy (TEM), optical absorption and photoluminescence (PL) measurements. The optical absorption spectra allow calculation of the bandgap value, [Formula: see text], where significant increase [Formula: see text]200 meV in the CdS bandgap when transforming from Hexagonal to Cubic phase was found.


Author(s):  
Jinlong Yu ◽  
Frederik Søndergaard-Pedersen ◽  
Aref Mamakhel ◽  
Paolo Lamagni ◽  
Bo Brummerstedt Iversen

Anatase TiO2 (a-TiO2) nanocrystals are vital in catalytic applications both as catalysts (e.g. photodegradation) and as a carrier material (e.g. NOx removal from exhaust). The synthesis of a-TiO2 nanocrystals and their properties have been heavily scrutinized, but there exists a clear gap between the scientific literature, and the scale and price expectation of industrial application. Here it is demonstrated that the industrially most attractive Ti precursor, titanyl sulfate (TiOSO4), can be combined with the green, scalable and fast supercritical flow method to produce phase pure and highly crystalline a-TiO2 nanoparticles with high specific surface area. Control of the nanocrystal morphology is important since it is known that certain facets substantially promote catalytic activity. It is, however, in itself challenging to determine nanocrystal morphology to provide a rational basis for the synthesis control. Here we advocate the use of advanced Rietveld refinement of powder X-ray diffraction data including anisotropic size broadening models in aiding to establish the sample three-dimensional morphology. This relatively quick and robust method assists in overcoming the often encountered ambiguity inherent in two-dimensional to three-dimensional reconstruction of selected particle morphologies with transmission electron microscopy and tomography techniques.


2001 ◽  
Vol 16 (7) ◽  
pp. 1960-1966 ◽  
Author(s):  
K. Miyazawa ◽  
H. Satsuki ◽  
M. Kuwabara ◽  
M. Akaishi

The structure and hardness of C60 bulk specimens compressed under 5.5 GPa at room temperature to 600 °C are investigated by high-resolution transmission electron microscopy, x-ray diffraction, and micro-Vickers hardness tests. A strong accumulation of the [1 1 0]tr orientation of high-pressure-treated C60 specimens was developed along the compression axis, and stacking faults and nano-sized deformation twins were introduced into the C60 specimens compressed at 450–600 °C. Curved lattice planes indicating a polymerization of C60 were observed by high resolution transmission electron microscopy (HRTEM). The polymerization of the high-pressure-compressed C60 is also supported by the computer simulation of HRTEM images.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1183
Author(s):  
Xing Liu ◽  
Shaoqing Guo ◽  
Xin Li ◽  
Lijing Yuan ◽  
Hongyu Dong ◽  
...  

Pure KIT-5 and a series of Al-KT-X materials modified by different amounts of aluminum were synthesized by a direct hydrothermal method and acted as supports for the catalysts of a quinoline hydrodenitrification reaction with the NiW active phases supported. The results of X-ray diffraction (XRD), N2 isotherm absorption-desorption, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) for the supports indicated that Al species were embedded into the framework of the KIT-5 materials with a large pore size, pore volume, and specific surface area. The Pyridine-Fourier transform infrared spectroscopy (Py-IR) result of the catalysts demonstrated that the addition of aluminum atoms enhanced the acidity of the catalysts. The results of the high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectra (XPS) characterizations for the sulfide catalysts indicated that the embedded Al species could facilitate the dispersion of active metals and the formation of the active phases. Among all the catalysts, NiW/Al-KT-40 showed the maximal hydrodenitrogenation conversion (HDNC) due to its open three-dimensional pore structure, appropriate acidity, and good dispersion of active metals.


Author(s):  
James Demarest ◽  
John Bruley

Abstract As semiconductor device scaling continues to reduce the structure size, device geometries are also changing to three dimensional structures such as finFETs, and the materials which compose the devices are also evolving to obtain additional device performance gains. The material change studied in this paper is the introduction of silicon germanium into the electrically active region of a finFET test structure. The paper demonstrates a quantitative energy dispersive X-ray spectroscopy transmission electron microscopy (TEM) technique through the use of blanket film calibration samples of known concentration characterized by X-ray diffraction. The technique is used to identify a test structure issue which could only be diagnosed with a technique having nanometer spatial resolution and atomic percent sensitivity. The results of the test structure analysis are independently verified by the complementary TEM electron energy loss spectroscopy technique.


NANO ◽  
2021 ◽  
pp. 2150085
Author(s):  
Dongen Zhang ◽  
Youxiang Jiang

Bi2S3/MoS2/g-C3N4 nanocomposite was synthesized using a solid-state method for the first time. Thiourea and bulk Bi2MoO6 were used as the precursors and were reacted under a nitrogen atmosphere. Bi2S3/MoS2/g-C3N4 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microcopy, X-ray photoelectron spectra and ultraviolet–visible diffuse reflectance spectroscopy. The structure of Bi2S3/MoS2/g-C3N4 is a three-dimensional network structure formed by uniform loading of g-C3N4 and MoS2 around the rod-like Bi2S3 framework. The photodegradation performance was evaluated by the degradation of rhodamine B during irradiation by a 350 W Xe lamp. The degradation rate of Bi2S3/MoS2/g-C3N4 towards rhodamine B reached 95.1% after irradiation for 150[Formula: see text]min. This study will provide new insights into the design of efficient and stable heterostructures for photocatalytic applications.


Sign in / Sign up

Export Citation Format

Share Document