Polymorphism in the spin-crossover ferric complexes [(TPA)FeIII(TCC)]PF6

2009 ◽  
Vol 65 (4) ◽  
pp. 474-480 ◽  
Author(s):  
Eric Collet ◽  
Marie-Laure Boillot ◽  
Johan Hebert ◽  
Nicolas Moisan ◽  
Marina Servol ◽  
...  

We have identified two polymorphs of the molecular complex [(TPA)Fe(III)(TCC)]PF6 [TPA = tris(2-pyridylmethyl)amine and TCC = 3,4,5,6-tetrachlorocatecholate dianion]: one is monoclinic and the other is orthorhombic. By lowering the temperature both undergo a thermal spin-crossover between a high-spin (S = 5/2) and a low-spin (S = 1/2) state, which we detected by magnetic, optical and X-ray diffraction measurements. The thermal crossover is only slightly shifted between the polymorphs. Their crystalline structures consist of similar cation layers alternating with PF6 anion layers, packed differently in the two polymorphs. The magnetic and optical properties of the polymorphs are presented.

Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 316 ◽  
Author(s):  
José Alberto Rodríguez-Velamazán ◽  
Kosuke Kitase ◽  
Elías Palacios ◽  
Miguel Castro ◽  
Ángel Fernández-Blanco ◽  
...  

The crystal structure of the polymeric spin crossover compound Fe(3,4-dimethyl-pyridine)2[Ag(CN)2]2 has been solved and its temperature dependence followed by means of single-crystal and powder X-ray diffraction. This compound presents a two-step spin transition with relatively abrupt steps centred at ca. 170 K and 145 K and a plateau at around 155 K. The origin of the two-step transition is discussed in light of these structural studies. The observations are compatible with a mostly disordered state between the two steps, consisting of mixing of high-spin and low-spin species, while weak substructure reflections in the mixed phase could indicate some degree of long-range order of the high-spin and low-spin sites.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


2020 ◽  
Vol 24 (10) ◽  
pp. 1139-1147
Author(s):  
Yang Mingyan ◽  
Wang Daoquan ◽  
Wang Mingan

2-Phenylcyclododecanone and 2-cyclohexylcyclododecanone derivatives were synthesized and characterized by 1H NMR, 13C NMR, HR-ESI-MS and X-ray diffraction. Their preferred conformations were analyzed by the coupling constants in the 1H NMR spectra and X-ray diffraction, which showed the skeleton ring of these derivatives containing [3333]-2-one conformation, and the phenyl groups were located at the side-exo position of [3333]-2-one conformation due to the strong π-π repulsive interaction between the π- electron of benzene ring and π-electron of carbonyl group. The cyclohexyl groups were located at the corner-syn or the side-exo position of [3333]-2-one conformation depending on the hindrance of the other substituted groups. The π-π electron effect played a crucial role in efficiently controlling the preferred conformation of 2-aromatic cyclododecanone and the other 2-aromatic macrocyclic derivatives with the similar preferred square and rectangular conformations.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


2015 ◽  
Vol 33 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Neeraj K. Mishra ◽  
Chaitnaya Kumar ◽  
Amit Kumar ◽  
Manish Kumar ◽  
Pratibha Chaudhary ◽  
...  

AbstractA nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.


2014 ◽  
Vol 989-994 ◽  
pp. 656-659
Author(s):  
Ping Cao ◽  
Yue Bai

Al co-doped ZnCoO thin film has been prepared by a sol-gel method. The structural and optical properties of the sample were investigated. X-ray diffraction and UV absorption spectroscopy analyses indicate that Al3+ and Co2+ substitute for Zn2+ without changing the wurtzite structure. With the Al doping, the visible emission increased and the UV emission decreased, which is attributed to the increase of O vacancies and Zn interstitials.


1994 ◽  
Vol 47 (12) ◽  
pp. 2221 ◽  
Author(s):  
MJ Crossley ◽  
SR Davies ◽  
TW Hambley

Bromohydrination of benzyl (1RS,2SR,4SR)-2-benzyloxycarbonylamino-1-trimethylsilyloxy-bicyclo[2.2.2]oct-5-ene-2-carboxylate (6a) and the (1RS,2RS,4SR)- diastereomer (6b) with N- bromoacetamide in aqueous dioxan has been investigated. These reactions are highly regio-and stereo-selective and give the corresponding bromohydrins (9a) and (9b), but in moderate to low yield. These bromohydrins have the necessary stereochemistry for conversion into anticapsin. The other products from the reaction are tricyclic compounds formed by capture of the anti- bromonium cation intermediates or resultant bromohydrins by interaction with the proximal protected carboxy and amino groups within the molecules. Thus the carbolactone (11) is formed from the endo -adduct (6a), and the carbonimidic acid derivative (12) and the cyclic urethane (13) are formed from the exo-adduct (6b). Cleavage of the trimethylsilyl group from the tricyclic compound (12) gives benzyl (1RS,2RS,3RS,7RS,8RS)-5-benzyloxy-2-bromo-8-hydroxy-4-oxa-6-azatricyclo[5.3.1.03,8]undec-5-ene-7-carboxylate(14), the structure of which was determined by X-ray diffraction methods and refined to a residual of 0.035 for 1549 independent observed reflections. The crystals of (14) are monoclinic, P21/c, a 12.954(3), b 6.197(3), c 26.784(7) Ǻ, β 95.33(2)°, Z 4. Reactions attempting to generate iodohydrins from the alkenes (6) were also highly regioselective and gave detrimethylsilylated iodo analogues of (11) and (13).


Sign in / Sign up

Export Citation Format

Share Document