scholarly journals Chemical and elemental mapping of spent nuclear fuel sections by soft X-ray spectromicroscopy

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Alexander Scott Ditter ◽  
Danil E. Smiles ◽  
Daniel Lussier ◽  
Alison B. Altman ◽  
Mukesh Bachhav ◽  
...  

Soft X-ray spectromicroscopy at the O K-edge, U N 4,5-edges and Ce M 4,5-edges has been performed on focused ion beam sections of spent nuclear fuel for the first time, yielding chemical information on the sub-micrometer scale. To analyze these data, a modification to non-negative matrix factorization (NMF) was developed, in which the data are no longer required to be non-negative, but the non-negativity of the spectral components and fit coefficients is largely preserved. The modified NMF method was utilized at the O K-edge to distinguish between two components, one present in the bulk of the sample similar to UO2 and one present at the interface of the sample which is a hyperstoichiometric UO2+x species. The species maps are consistent with a model of a thin layer of UO2+x over the entire sample, which is likely explained by oxidation after focused ion beam (FIB) sectioning. In addition to the uranium oxide bulk of the sample, Ce measurements were also performed to investigate the oxidation state of that fission product, which is the subject of considerable interest. Analysis of the Ce spectra shows that Ce is in a predominantly trivalent state, with a possible contribution from tetravalent Ce. Atom probe analysis was performed to provide confirmation of the presence and localization of Ce in the spent fuel.

2015 ◽  
Vol 21 (3) ◽  
pp. 557-563 ◽  
Author(s):  
Björn Pfeiffer ◽  
Torben Erichsen ◽  
Eike Epler ◽  
Cynthia A. Volkert ◽  
Piet Trompenaars ◽  
...  

AbstractA method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested—dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT.


Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


1998 ◽  
Vol 546 ◽  
Author(s):  
D. P. Adams ◽  
G. L. Benavides ◽  
M. J. vasile

AbstractThis work combines focused ion beam sputtering and ultra-precision machining for microfabrication of metal alloys and polymers. Specifically, micro-end mills are made by Ga ion beam sputtering of a cylindrical tool shank. Using an ion energy of 20keV, the focused beam defines the tool cutting edges that have submicrometer radii of curvature. We demonstrate 25μm diameter micromilling tools having 2, 4 and 5 cutting edges. These tools fabricate fine channels, 26–28 microns wide, in 6061 aluminum, brass, and polymethyl methacrylate. Micro-tools are structurally robust and operate for more than 5 hours without fracture.


2006 ◽  
Vol 985 ◽  
Author(s):  
Jeffrey A. Fortner ◽  
A. Jeremy Kropf ◽  
James L. Jerden ◽  
James C. Cunnane

AbstractPerformance assessment models of the U. S. repository at Yucca Mountain, Nevada suggest that neptunium from spent nuclear fuel is a potentially important dose contributor. A scientific understanding of how the UO2 matrix of spent nuclear fuel impacts the oxidative dissolution and reductive precipitation of Np is needed to predict the behavior of Np at the fuel surface during aqueous corrosion. Neptunium would most likely be transported as aqueous Np(V) species, but for this to occur it must first be oxidized from the Np(IV) state found within the parent spent nuclear fuel. In this paper we present synchrotron x-ray absorption spectroscopy and microscopy findings that illuminate the resultant local chemistry of neptunium and plutonium within uranium oxide spent nuclear fuel before and after corrosive alteration in an air-saturated aqueous environment. We find the Pu and Np in unaltered spent fuel to have a +4 oxidation state and an environment consistent with solid-solution in the UO2 matrix. During corrosion in an air-saturated aqueous environment, the uranium matrix is converted to uranyl (UO22+) mineral assemblage that is depleted in Np and Pu relative to the parent fuel. The transition from U(IV) in the fuel to a fully U(VI) character across the corrosion front is not sharp, but occurs over a transition zone of ∼ 50 micrometers. We find evidence of a thin (∼ 20 micrometer) layer that is enriched in Pu and Np within a predominantly U(IV) environment on the fuel side of the transition zone. These experimental observations are consistent with available data for the standard reduction potentials for NpO2+/Np4+ and UO22+/U4+ couples, which indicate that Np(IV) may not be effectively oxidized to Np(V) at the corrosion potential of uranium dioxide spent nuclear fuel in air-saturated aqueous solutions.


MRS Advances ◽  
2018 ◽  
Vol 3 (19) ◽  
pp. 991-1003 ◽  
Author(s):  
Evaristo J. Bonano ◽  
Elena A. Kalinina ◽  
Peter N. Swift

ABSTRACTCurrent practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-century when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.


CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


2000 ◽  
Vol 6 (S2) ◽  
pp. 524-525 ◽  
Author(s):  
Michael W. Phaneuf ◽  
Jian Li

Focused ion beam (FIB) microscopes, the use of which is well established in the semiconductor industry, are rapidly gaining attention in the field of materials science, both as a tool for producing site specific, parallel sided TEM specimens and as a stand alone specimen preparation and imaging tool.Both FIB secondary ion images (FIB SII) and FIB secondary electron images (FIB SEI) contain novel crystallographic and chemical information. The ability to see “orientation contrast” in FIB SEI and to a lesser extent SII is well known for cubic materials and more recently stress-free FIB sectioning combined with FIB imaging have been shown to reveal evidence of plastic deformation in metallic specimens. Particularly in hexagonal metals, FIB orientation contrast is sometimes reduced or eliminated by the FIB sectioning process. We have successfully employed FIB gas assisted etching during FIB sectioning using XeF2 for zirconium alloys and Cl2 for zinc coatings on steels to retain orientation contrast during subsequent imaging.


1995 ◽  
Vol 396 ◽  
Author(s):  
P.G. Blauner ◽  
A. Wagner

AbstractThe ion beam induced metal deposition processes now employed by commercial focused ion beam (FIB) tools all demonstrate less than optimal characteristics for use in circuit repair, a major application of these tools. In particular, the processes have low efficiencies, the metals produced have poor conductivity, and some form of clean up is generally required to remove excess material surrounding the repair site. The gold deposition process developed for x-ray mask repair, in contrast, exhibits efficiencies 10-50 times higher with significantly less material deposited in unwanted areas. Unfortunately, the conductivity of the gold is even poorer than that of materials now used for FIB circuit repair.In this paper, an annealing step which improves the conductivity of FIB deposited Au is described. Results are presented demonstrating resistivities of 5-15 μΩ-cm while maintaining the high efficiency of the gold deposition process. The suitability of the process for use in FIB circuit repair is discussed.


2017 ◽  
Vol 23 (5) ◽  
pp. 916-925
Author(s):  
Pritesh Parikh ◽  
Corey Senowitz ◽  
Don Lyons ◽  
Isabelle Martin ◽  
Ty J. Prosa ◽  
...  

AbstractThe semiconductor industry has seen tremendous progress over the last few decades with continuous reduction in transistor size to improve device performance. Miniaturization of devices has led to changes in the dopants and dielectric layers incorporated. As the gradual shift from two-dimensional metal-oxide semiconductor field-effect transistor to three-dimensional (3D) field-effect transistors (finFETs) occurred, it has become imperative to understand compositional variability with nanoscale spatial resolution. Compositional changes can affect device performance primarily through fluctuations in threshold voltage and channel current density. Traditional techniques such as scanning electron microscope and focused ion beam no longer provide the required resolution to probe the physical structure and chemical composition of individual fins. Hence advanced multimodal characterization approaches are required to better understand electronic devices. Herein, we report the study of 14 nm commercial finFETs using atom probe tomography (APT) and scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy (STEM-EDS). Complimentary compositional maps were obtained using both techniques with analysis of the gate dielectrics and silicon fin. APT additionally provided 3D information and allowed analysis of the distribution of low atomic number dopant elements (e.g., boron), which are elusive when using STEM-EDS.


Sign in / Sign up

Export Citation Format

Share Document