Growth of c-plane and m-plane aluminium-doped zinc oxide thin films: epitaxy on flexible substrates with cubic-structure seeds

Author(s):  
Yongkuan Li ◽  
Xinxing Liu ◽  
Dan Wen ◽  
Kai Lv ◽  
Gang Zhou ◽  
...  

Manufacturing high-quality zinc oxide (ZnO) devices demands control of the orientation of ZnO materials due to the spontaneous and piezoelectric polarity perpendicular to the c-plane. However, flexible electronic and optoelectronic devices are mostly built on polymers or glass substrates which lack suitable epitaxy seeds for the orientation control. Applying cubic-structure seeds, it was possible to fabricate polar c-plane and nonpolar m-plane aluminium-doped zinc oxide (AZO) films epitaxially on flexible Hastelloy substrates through minimizing the lattice mismatch. The growth is predicted of c-plane and m-plane AZO on cubic buffers with lattice parameters of 3.94–4.63 Å and 5.20–5.60 Å, respectively. The ∼80 nm-thick m-plane AZO film has a resistivity of ∼11.43 ± 0.01 × 10−4 Ω cm, while the c-plane AZO film shows a resistivity of ∼2.68 ± 0.02 × 10−4 Ω cm comparable to commercial indium tin oxide films. An abnormally higher carrier concentration in the c-plane than in the m-plane AZO film results from the electrical polarity along the c-axis. The resistivity of the c-plane AZO film drops to the order of 10−5 Ω cm at 500 K owing to the semiconducting behaviour. Epitaxial AZO films with low resistivities and controllable orientations on flexible substrates offer optimal transparent electrodes and epitaxy seeds for high-performance flexible ZnO devices.

2014 ◽  
Vol 997 ◽  
pp. 337-340
Author(s):  
Jian Guo Chai

Indium tin oxide (ITO) films were deposited on glass substrates by magnetron sputtering. Properties of ITO films showed a dependence on substrate temperature. With an increasing in substrate temperature, the intensity of XRD peak increased and the grain size showed an evident increasing. The results show that increasing substrate temperature remarkably improves the characteristics of the films. The sheet resistance of 10 Ω/sq and the maximum optical transmittance of 90% in the visible range with optimized conditions can be achicved. The results of experiment demonstrate that high-quality films have been achieved by this technique.


2014 ◽  
Vol 556 ◽  
pp. 155-159 ◽  
Author(s):  
Yu Xiao ◽  
Fangyuan Gao ◽  
Guobo Dong ◽  
Tingting Guo ◽  
Qirong Liu ◽  
...  

2003 ◽  
Vol 17 (08n09) ◽  
pp. 1904-1909
Author(s):  
Yang Ju ◽  
YO Hirosawa ◽  
Masumi Saka ◽  
Hiroyuki Abé

A method for contactless measurement of the conductivity of thin conducting film was demonstrated. In order to apply the technique to on-line testing, a large standoff distance of 35 mm was obtained by using a reflector focusing sensor. The measurement was preformed by using a microwave compact equipment working at 94 GHz which was developed for decreasing the system cost. Indium Tin Oxide films having conductivity of 8.2 × 104 ~ 6.6 × 105 S/m on the glass substrates were used as the samples. Evaluation equation for determining the conductivity of Indium Tin Oxide films was generated.


2007 ◽  
Vol 1035 ◽  
Author(s):  
Shih Hsiu Hsiao ◽  
Yoshikazu Tanaka ◽  
Ari Ide-Ektessabi

AbstractZinc oxide was considered to be substitute for indium tin oxide (ITO) as the transparent conductive oxide (TCO) films used in display industry according to indium is a rare and expensive metal. For the flexible display, the polymeric materials used as the flexible substrates are more bendable and lighter weight compared to the glass substrates used in flat panel display. However, the thermal sensitivity of polymer affects the properties of TCOs layers when it was deposited at room temperature. In this study, we doped the different ratio of indium oxide, magnesium oxide and aluminum oxide into zinc oxide to improve the properties of zinc oxide used as the TCOs films deposited by the sputtering method. The polyethylene terephthalate (PET) was used as the flexible substrate without thermal process and the glass was used as the comparison substrate with annealing. The light transmittance and the surface resistivity were measured. The chemical composition and the crystal structure were analyzed by using Rutherford backscattering spectrometry and X-ray diffraction measurement.


1996 ◽  
Vol 426 ◽  
Author(s):  
T. J. Coutts ◽  
X. Wu ◽  
W. P. Mulligan

AbstractWe are examining various spinel-structured thin films (e.g., Cd2SnO4, Zn2SnO4) to develop higher-quality transparent conducting oxides (TCO) than more conventional materials such as indium tin oxide. Here, we report on cadmium indate (CdIn2O4, CIO), which is another member of this family. Thin films of CIO were deposited by radio-frequency (RF) magnetron sputtering, from an oxide target, onto borosilicate glass substrates. The variables included the substrate temperature, sputtering gas composition, and pressure. Film properties were measured before and after heat treatment. Characterization involved Hall effect measurements, optical and infrared spectrophotometry, X-ray diffraction, and atomic-force microscopy. Film resistivities as low as 2.3x10-4Ω cm were achieved for a film thickness of 0.55 μm. The transmittance was 90% in the visible region of the spectrum, without correction for substrate losses and without an anti-reflection coating. The plasma resonance occurred at longer wavelengths than for other materials and this, with a bandgap of approximately 3.1 eV, presents a wide window for optical transmittance. The highest mobility was 54 cm2 V-s-1 and the highest carrier concentration was 7.5x1020 cm-3.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 867
Author(s):  
Xinyu Chen ◽  
Yuting He ◽  
Xiaofeng Chen ◽  
Chunyu Huang ◽  
Yang Li ◽  
...  

Metallic nanomesh, one of the emerging transparent conductive film (TCF) materials with both high electrical conductivity and optical transmittance, shows great potential to replace indium tin oxide (ITO) in optoelectronic devices. However, lithography-fabricated metallic nanomeshes suffer from an iridescence problem caused by the optical diffraction of periodic nanostructures, which has negative effects on display performance. In this work, we propose a novel approach to fabricate large-scale metallic nanomesh as TCFs on flexible polyethylene terephthalate (PET) sheets by maskless phase separation lithography of polymer blends in a low-cost and facile process. Polystyrene (PS)/polyphenylsilsequioxane (PPSQ) polymer blend was chosen as resist material for phase separation lithography due to their different etching selectivity under O2 reactive ion etching (RIE). The PS constituent was selectively removed by O2 RIE and the remained PPSQ nanopillars with varying sizes in random distribution were used as masks for further pattern transfer and metal deposition process. Gold (Au) nanomeshes with adjustable nanostructures were achieved after the lift-off step. Au nanomesh exhibited good optoelectronic properties (RS = 41 Ω/sq, T = 71.9%) and non-iridescence, without angle dependence owing to the aperiodic structures of disordered apertures. The results indicate that this Au nanomesh has high potential application in high-performance and broad-viewing-angle optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document