scholarly journals High-resolution crystal structures of Escherichia coli FtsZ bound to GDP and GTP

Author(s):  
Maria A. Schumacher ◽  
Tomoo Ohashi ◽  
Lauren Corbin ◽  
Harold P. Erickson

Bacterial cytokinesis is mediated by the Z-ring, which is formed by the prokaryotic tubulin homolog FtsZ. Recent data indicate that the Z-ring is composed of small patches of FtsZ protofilaments that travel around the bacterial cell by treadmilling. Treadmilling involves a switch from a relaxed (R) state, favored for monomers, to a tense (T) conformation, which is favored upon association into filaments. The R conformation has been observed in numerous monomeric FtsZ crystal structures and the T conformation in Staphylococcus aureus FtsZ crystallized as assembled filaments. However, while Escherichia coli has served as a main model system for the study of the Z-ring and the associated divisome, a structure has not yet been reported for E. coli FtsZ. To address this gap, structures were determined of the E. coli FtsZ mutant FtsZ(L178E) with GDP and GTP bound to 1.35 and 1.40 Å resolution, respectively. The E. coli FtsZ(L178E) structures both crystallized as straight filaments with subunits in the R conformation. These high-resolution structures can be employed to facilitate experimental cell-division studies and their interpretation in E. coli.

2016 ◽  
Vol 198 (11) ◽  
pp. 1683-1693 ◽  
Author(s):  
Elyse J. Roach ◽  
Charles Wroblewski ◽  
Laura Seidel ◽  
Alison M. Berezuk ◽  
Dyanne Brewer ◽  
...  

ABSTRACTBacterial cell division is an essential and highly coordinated process. It requires the polymerization of the tubulin homologue FtsZ to form a dynamic ring (Z-ring) at midcell. Z-ring formation relies on a group of FtsZ-associatedproteins (Zap) for stability throughout the process of division. InEscherichia coli, there are currently five Zap proteins (ZapA through ZapE), of which four (ZapA, ZapB, ZapC, and ZapD) are small soluble proteins that act to bind and bundle FtsZ filaments. In particular, ZapD forms a functional dimer and interacts with the C-terminal tail of FtsZ, but little is known about its structure and mechanism of action. Here, we present the crystal structure ofEscherichia coliZapD and show it forms a symmetrical dimer with centrally located α-helices flanked by β-sheet domains. Based on the structure of ZapD and its chemical cross-linking to FtsZ, we targeted nine charged ZapD residues for modification by site-directed mutagenesis. Usingin vitroFtsZ sedimentation assays, we show that residues R56, R221, and R225 are important for bundling FtsZ filaments, while transmission electron microscopy revealed that altering these residues results in different FtsZ bundle morphology compared to those of filaments bundled with wild-type ZapD. ZapD residue R116 also showed altered FtsZ bundle morphology but levels of FtsZ bundling similar to that of wild-type ZapD. Together, these results reveal that ZapD residues R116, R221, and R225 likely participate in forming a positively charged binding pocket that is critical for bundling FtsZ filaments.IMPORTANCEZ-ring assembly underpins the formation of the essential cell division complex known as the divisome and is required for recruitment of downstream cell division proteins. ZapD is one of several proteins inE. colithat associates with the Z-ring to promote FtsZ bundling and aids in the overall fitness of the division process. In the present study, we describe the dimeric structure ofE. coliZapD and identify residues that are critical for FtsZ bundling. Together, these results advance our understanding about the formation and dynamics of the Z-ring prior to bacterial cell division.


2007 ◽  
Vol 90 (2-3) ◽  
pp. 59-72 ◽  
Author(s):  
Medhatm Khattar ◽  
Issmat I. Kassem ◽  
Ziad W. El-Hajj

In 1993, William Donachie wrote “The success of molecular genetics in the study of bacterial cell division has been so great that we find ourselves, armed with much greater knowledge of detail, confronted once again with the same naive questions that we set to answer in the first place”1. Indeed, attempts to answer the apparently simple question of how a bacterial cell divides have led to a wealth of new knowledge, in particular over the past decade and a half. And while some questions have been answered to a great extent since the early reports of isolation of division mutants of Escherichia coli2,3, some key pieces of the puzzle remain elusive. In addition to it being a fundamental process in bacteria that merits investigation in its own right, studying the process of cell division offers an abundance of new targets for the development of new antibacterial compounds that act directly against key division proteins and other components of the cytoskeleton, which are encoded by the morphogenes of E. coli4. This review aims to present the reader with a snapshot summary of the key players in E. coli morphogenesis with emphasis on cell division and the rod to sphere transition.


2021 ◽  
Author(s):  
Shirin Ansari ◽  
James C. Walsh ◽  
Amy L. Bottomley ◽  
Iain G. Duggin ◽  
Catherine Burke ◽  
...  

Rod-shaped bacteria such as Escherichia coli can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in E. coli, a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC. However, the exact gene responsible for this division inhibition has remained unknown for over 35 years. A recent high-throughput over-expression screen in E. coli identified the e14 prophage gene, ymfM, as a potential cell division inhibitor. In this study, we show that the inducible expression of ymfM from a plasmid causes filamentation. We show that this expression of ymfM results in the inhibition of Z ring formation and is independent of the well characterised inhibitors of FtsZ ring assembly in E. coli, SulA, SlmA and MinC. We confirm that ymfM is the gene responsible for the SfiC phenotype as it contributes to the filamentation observed during the SOS response. This function is independent of SulA, highlighting that multiple alternative division inhibition pathways exist during the SOS response. Our data also highlight that our current understanding of cell division regulation during the SOS response is incomplete and raises many questions regarding how many inhibitors there actually are and their purpose for the survival of the organism. Importance: Filamentation is an important biological mechanism which aids in the survival, pathogenesis and antibiotic resistance of bacteria within different environments, including pathogenic bacteria such as uropathogenic Escherichia coli. Here we have identified a bacteriophage-encoded cell division inhibitor which contributes to the filamentation that occurs during the SOS response. Our work highlights that there are multiple pathways that inhibit cell division during stress. Identifying and characterising these pathways is a critical step in understanding survival tactics of bacteria which become important when combating the development of bacterial resistance to antibiotics and their pathogenicity.


2020 ◽  
Author(s):  
Shirin Ansari ◽  
James C. Walsh ◽  
Amy L. Bottomley ◽  
Iain G. Duggin ◽  
Catherine Burke ◽  
...  

AbstractRod-shaped bacteria such as Escherichia coli can regulate cell division in response to stress, leading to filamentation, a process where cell growth and DNA replication continues in the absence of division, resulting in elongated cells. The classic example of stress is DNA damage which results in the activation of the SOS response. While the inhibition of cell division during SOS has traditionally been attributed to SulA in E. coli, a previous report suggests that the e14 prophage may also encode an SOS-inducible cell division inhibitor, previously named SfiC. However, the exact gene responsible for this division inhibition has remained unknown for over 35 years. A recent high-throughput over-expression screen in E. coli identified the e14 prophage gene, ymfM, as a potential cell division inhibitor. In this study, we show that the inducible expression of ymfM from a plasmid causes filamentation. We show that this expression of ymfM results in the inhibition of Z ring formation and is independent of the well characterised inhibitors of FtsZ ring assembly in E. coli, SulA, SlmA and MinC. We confirm that ymfM is the gene responsible for the SfiC+ phenotype as it contributes to the filamentation observed during the SOS response. This function is independent of SulA, highlighting that multiple division inhibition pathways exist during the stress-induced SOS response. Our data also highlight that our current understanding of cell division regulation during the SOS response is incomplete and raises many questions regarding how many inhibitors there actually are and their purpose for the survival of the organism.ImportanceFilamentation is an important biological mechanism which aids in the survival, pathogenesis and antibiotic resistance of bacteria within different environments, including pathogenic bacteria such as uropathogenic Escherichia coli. Here we have identified a bacteriophage-encoded cell division inhibitor which contributes to the filamentation that occurs during the SOS response. Our work highlights that there are multiple pathways that inhibit cell division during stress. Identifying and characterising these pathways is a critical step in understanding survival tactics of bacteria which become important when combating the development of bacterial resistance to antibiotics and their pathogenicity.


EcoSal Plus ◽  
2021 ◽  
Author(s):  
Petra Anne Levin ◽  
Anuradha Janakiraman

Decades of research, much of it in Escherichia coli , have yielded a wealth of insight into bacterial cell division. Here, we provide an overview of the E. coli division machinery with an emphasis on recent findings.


2021 ◽  
Vol 22 (22) ◽  
pp. 12101
Author(s):  
Elisa Consoli ◽  
Joen Luirink ◽  
Tanneke den Blaauwen

The BAM is a macromolecular machine responsible for the folding and the insertion of integral proteins into the outer membrane of diderm Gram-negative bacteria. In Escherichia coli, it consists of a transmembrane β-barrel subunit, BamA, and four outer membrane lipoproteins (BamB-E). Using BAM-specific antibodies, in E. coli cells, the complex is shown to localize in the lateral wall in foci. The machinery was shown to be enriched at midcell with specific cell cycle timing. The inhibition of septation by aztreonam did not alter the BAM midcell localization substantially. Furthermore, the absence of late cell division proteins at midcell did not impact BAM timing or localization. These results imply that the BAM enrichment at the site of constriction does not require an active cell division machinery. Expression of the Tre1 toxin, which impairs the FtsZ filamentation and therefore midcell localization, resulted in the complete loss of BAM midcell enrichment. A similar effect was observed for YidC, which is involved in the membrane insertion of cell division proteins in the inner membrane. The presence of the Z-ring is needed for preseptal peptidoglycan (PG) synthesis. As BAM was shown to be embedded in the PG layer, it is possible that BAM is inserted preferentially simultaneously with de novo PG synthesis to facilitate the insertion of OMPs in the newly synthesized outer membrane.


2006 ◽  
Vol 188 (20) ◽  
pp. 7132-7140 ◽  
Author(s):  
Masaki Osawa ◽  
Harold P. Erickson

ABSTRACT FtsZs from Mycoplasma pulmonis (MpuFtsZ) and Bacillus subtilis (BsFtsZ) are only 46% and 53% identical in amino acid sequence to FtsZ from Escherichia coli (EcFtsZ). In the present study we show that MpuFtsZ and BsFtsZ can function for cell division in E. coli provided we make two modifications. First, we replaced their C-terminal tails with that from E. coli, giving the foreign FtsZ the binding site for E. coli FtsA and ZipA. Second, we selected for mutations in the E. coli genome that facilitated division by the foreign FtsZs. These suppressor strains arose at a relatively high frequency of 10−3 to 10−5, suggesting that they involve loss-of-function mutations in multigene pathways. These pathways may be negative regulators of FtsZ or structural pathways that facilitate division by slightly defective FtsZ. Related suppressor strains were obtained for EcFtsZ containing certain point mutations or insertions of yellow fluorescent protein. The ability of highly divergent FtsZs to function for division in E. coli is consistent with a two-part mechanism. FtsZ assembles the Z ring, and perhaps generates the constriction force, through self interactions; the downstream division proteins remodel the peptidoglycan wall by interacting with each other and the wall. The C-terminal peptide of FtsZ, which binds FtsA, provides the link between FtsZ assembly and peptidoglycan remodeling.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 235 ◽  
Author(s):  
Marcin Krupka ◽  
William Margolin

To generate two cells from one, bacteria such asEscherichia coliuse a complex of membrane-embedded proteins called the divisome that synthesize the division septum. The initial stage of cytokinesis requires a tubulin homolog, FtsZ, which forms polymers that treadmill around the cell circumference. The attachment of these polymers to the cytoplasmic membrane requires an actin homolog, FtsA, which also forms dynamic polymers that directly bind to FtsZ. Recent evidence indicates that FtsA and FtsZ regulate each other’s oligomeric state inE. colito control the progression of cytokinesis, including the recruitment of septum synthesis proteins. In this review, we focus on recent advances in our understanding of protein-protein association between FtsZ and FtsA in the initial stages of divisome function, mainly in the well-characterizedE. colisystem.


2020 ◽  
Vol 202 (23) ◽  
Author(s):  
Atsushi Yahashiri ◽  
Jill T. Babor ◽  
Ariel L. Anwar ◽  
Ryan P. Bezy ◽  
Evan W. Piette ◽  
...  

ABSTRACT We report that the small Escherichia coli membrane protein DrpB (formerly YedR) is involved in cell division. We discovered DrpB in a screen for multicopy suppressors of a ΔftsEX mutation that prevents divisome assembly when cells are plated on low ionic strength medium, such as lysogeny broth without NaCl. Characterization of DrpB revealed that (i) translation initiates at an ATG annotated as codon 22 rather than the GTG annotated as codon 1, (ii) DrpB localizes to the septal ring when cells are grown in medium of low ionic strength but localization is greatly reduced in medium of high ionic strength, (iii) overproduction of DrpB in a ΔftsEX mutant background improves recruitment of the septal peptidoglycan synthase FtsI, implying multicopy suppression works by rescuing septal ring assembly, (iv) a ΔdrpB mutant divides quite normally, but a ΔdrpB ΔdedD double mutant has a strong division and viability defect, albeit only in medium of high ionic strength, and (v) DrpB homologs are found in E. coli and a few closely related enteric bacteria, but not outside this group. In sum, DrpB is a poorly conserved nonessential division protein that improves the efficiency of cytokinesis under suboptimal conditions. Proteins like DrpB are likely to be a widespread feature of the bacterial cell division apparatus, but they are easily overlooked because mutants lack obvious shape defects. IMPORTANCE A thorough understanding of bacterial cell division requires identifying and characterizing all of the proteins that participate in this process. Our discovery of DrpB brings us one step closer to this goal in E. coli.


2018 ◽  
Author(s):  
Jaana Männik ◽  
Bryant E. Walker ◽  
Jaan Männik

AbstractA key regulator of cell division in most walled bacteria is the FtsZ protein that assembles into protofilaments attached to the membrane at midcell. These dynamic protofilament assemblies, known as the Z-ring, act as a scaffold for more than two dozen proteins involved in synthesis of septal cell envelopes. What triggers the formation of the Z-ring during the cell cycle is poorly understood. InEscherichia colimodel organism, the common view is that FtsZ concentration is constant throughout its doubling time and therefore regulation of assembly should be controlled by some yet to be identified protein-protein interactions. Here we show using quantitative analysis of newly developed fluorescent reporter that FtsZ concentration varies in a cell-cycle dependent manner in slow growth conditions and that upregulation of FtsZ synthesis correlates with the formation of the Z-ring. About 4-fold upregulation of FtsZ synthesis in the first half of the cell cycle is followed by its rapid degradation by ClpXP protease in the last 10% of the cell cycle. The initiation of rapid degradation coincides with dissociation of FtsZ from the septum. Altogether, our data indicate that the Z-ring formation in slow growth conditions inE. coliis controlled by a regulatory sequence where upregulation of an essential cell cycle factor is followed by its degradation.SignificanceFtsZ is the key regulator for bacterial cell division. It initiates division by forming a dynamic ring-like structure, the Z-ring, at the mid-cell. Here we show that, contrarily to the current paradigm, FtsZ concentration inEscherichia colimodel organism varies throughout cell cycle in slow growth conditions. Faster FtsZ synthesis in the first half of the cell cycle is followed by its rapid degradation by ClpXP protease in the end of the cell cycle. Upregulation of FtsZ synthesis correlates with the formation of the Z-ring. Our data demonstrates that in slow growthE. colicell division progresses according to paradigm where upregulation of essential cell cycle factor is followed by its degradation.


Sign in / Sign up

Export Citation Format

Share Document