Electro chemical impedance spectroscopy (EIS) study of modified SS316L using radio frequency sputtering Ti6Al4V coating in Ringer solution

2019 ◽  
Vol 66 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Murtdha Adhab Siyah ◽  
Rostam Moradian ◽  
Iraj Manouchehri

PurposeSS316L alloy used in biomedical application and the alloy have Fe, Cr and Ni elements and release this ion into the human body causing dangerous effects for the human body, and make the SS316L, which is used as surgical implant failure in short time in biomedical application. This study aims to use Ti6Al4V as coating for SS316L alloy to make it have bio inert surface, and modified the surface alloy for biomedical application from another part in this study, we want to decrease the corrosion rate for SS316L in simulated body surface Ringer solution.Design/methodology/approachThe morphology, roughness, XRD of the coating, potential polarization and electrochemical impedance spectra investigation to study the effect of Ti6Al4V coating on corrosion behaviors of SS316L in the Ringer solution.FindingsThis study discusses the modification of SS316L surfaces by using Ti6Al4V radio magnetron frequency sputtering techniques, the results of the EIS and polarization of SS316L in Ringer’s solution at 37°C shows that improved resistance against corrosive ions for all the samples coating with Ti6Al4V and especially with a coating have a thickness of 850 nm at a sputtering power of 150 W.Research limitations/implicationsPolarization and electro chemical impedance spectra were assessed to investigate the effect of Ti6Al4V coating on corrosion behaviors of SS316L alloy in the Ringer solution.Practical implicationsThis study discussed the modification SS316L surfaces by using Ti6Al4V radio magnetron frequency sputtering techniques. The results of the EIS and polarization of SS316L in Ringer’s solution at 37°C improved resistance against corrosive ions for all the samples coating with a Ti6Al4V and specificity with the coating sample have a thickness 850 nm at a sputtering power of 150 W.Social implicationsThe goal of this study to modification SS316L alloy surface by using Ti6al4V RF Sputtering to give the SS316L alloy more resistance for biocorrosion.Originality/valueIn this research, Ti6Al4V RF sputtering as a coating for SS316L, study the bio corrosion behaviors in Simulated body fluid Ringer solution and investigation the corrosion by using EIS analysis.

2013 ◽  
Vol 699 ◽  
pp. 645-649
Author(s):  
Chang Bin Shen

Similar welds composed of 5083 were produced by friction stir welding. In the solution of 0.2 M NaHSO3 and 0.6 M NaCl, with the addition of a given concentration sodium molybdate as the inhibitor, the electrochemical corrosion behaviors of the friction stir welds (FSW) and 5083 were comparatively investigated by potentiodynamic polarization curve tests and electrochemical impedance spectra (EIS) at the ambient temperature for different test periods. The results indicated that : with the extension of period, the inhibition efficiencies (IE) for both the weld and 5083 base materials enhanced, at the same period, the inhibition efficiency (IE) for the weld was beyond that for 5083 base materials, sodium molybdate may be thought of as an effective inhibitor for 5083 aluminum alloy, the interaction between inhibitor and weld is stronger than that between inhibitor and base materials.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 591 ◽  
Author(s):  
Sebastian Feliu ◽  
Lucien Veleva ◽  
Federico García-Galvan

In this work, the corrosion behaviors of the AZ31B alloy in Ringer’s solution at 20 °C and 37 °C were compared over four days to better understand the influence of temperature and immersion time on corrosion rate. The corrosion products on the surfaces of the AZ31B alloys were examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) provided information about the protective properties of the corrosion layers. A significant acceleration in corrosion rate with increasing temperature was measured using mass loss and evolved hydrogen methods. This temperature effect was directly related to the changes in chemical composition and thickness of the Al-rich corrosion layer formed on the surface of the AZ31B alloy. At 20 °C, the presence of a thick (micrometer scale) Al-rich corrosion layer on the surface reduced the corrosion rate in Ringer’s solution over time. At 37 °C, the incorporation of additional Mg and Al compounds containing Cl into the Al-rich corrosion layer was observed in the early stages of exposure to Ringer’s solution. At 37 °C, a significant decrease in the thickness of this corrosion layer was noted after four days.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Carmen Marina Garcia-Falcon ◽  
Tomas Gil-Lopez ◽  
Amparo Verdu-Vazquez ◽  
Julia Claudia Mirza-Rosca

Purpose This paper aims to analyze the corrosion behavior in Ringer solution of six commercially used Ni-based alloys that are present and commonly used as metallic biomaterials. Design/methodology/approach The specimens were received in the form of cylindrical ingots and were cut to get five samples of each brand with a cylindrical shape of 2 mm height to conduct the study. In this scientific research, the following techniques were used: open circuit potential, potentiodynamic polarization studies, and electrochemical impedance spectroscopy. Findings The study findings revealed the passivation tendency of the different specimens. Additionally, when the materials were compared, it was discovered that the decisive factor for high corrosion resistance was the chromium concentration. However, with similar chromium content, the stronger concentration in molybdenum increased the resistance. According to the results obtained in this investigation, the biological safety of the dental materials studied in Ringer solution was considered very high for specimens 1 and 2, and adequate for the other samples. Originality/value Metal alloys used as biomaterials in contact with the human body should be deeply investigated to make sure they are biocompatible and do not cause any harm. The corrosion resistance of an alloy is the most important characteristic for its biological safety, as all problems arise because of the corrosion process. There is scarce investigation in these Ni-based dental biomaterials, and none found in these commercially used dental materials in Ringer solution.


2016 ◽  
Vol 63 (4) ◽  
pp. 281-288 ◽  
Author(s):  
X.Q. Liu ◽  
Z.L. Liu ◽  
J.D. Hu ◽  
Z.G. Hou ◽  
Q.C. Tian ◽  
...  

Purpose The purpose of this study is to explore the corrosion behaviors of tube pile steel with the addition of 0.2 per cent Cu and 0.2 per cent Cu-0.2 per cent Cr in half-immersion environment. Design/methodology/approach The electrochemical corrosion behaviors of tube pile steel with different alloy-elements addition were identified using the polarization curve method and electrochemical impedance spectroscopy technique. Corrosion product and its morphology were analyzed by X-ray diffraction, optical microscope and scanning electron microscopy. Findings Results indicate that the most serious corrosion occurred in the liquid-air interface zone due to the higher oxygen and water concentration. With the addition of Cu and Cu-Cr, pits were getting smaller and denser, transforming the corrosion type from pitting corrosion to uniform corrosion gradually. Rust layer containing Cu/Cr tended to compact and inhibited the anodic process, while the enrichment of Cu/Cr in rust layer decelerated the dissolution of substrate, thus the expanding of pits was suppressed. Originality/value This paper studied the corrosion behaviors of liquid-air interface zone of tube pile steel and verified the transformation of corrosion type with adding Cu, Cu/Cr elements.


2014 ◽  
Vol 61 (5) ◽  
pp. 314-318 ◽  
Author(s):  
Chunmei Zhao ◽  
Yingwu Yao

Purpose – This paper aims to report a study of the influence of tungsten carbide (WC) nanoparticles on corrosion resistance properties of electroless nickel–phosphorus (Ni–P) coatings in NaCl solution. Design/methodology/approach – The morphology of Ni–P–WC nanocomposite coatings was observed by scanning electron microscopy (SEM). The anodic polarization curves, electrochemical impedance spectra (EIS) and weight loss measurements were used to study the corrosion resistance properties of Ni–P–WC nanocomposite coatings in NaCl solution. Findings – The WC nanoparticles content in the coatings increased with the increase of its concentration in the bath, and the WC nanoparticles are uniformly distributed in Ni–P alloy matrix. The results showed that the incorporation of WC nanoparticles elevated the corrosion resistance properties of Ni–P alloy matrix. Originality/value – This study shows that the corrosion resistance was improved by the addition of WC nanoparticles to the Ni–P alloy matrix.


2019 ◽  
Vol 66 (6) ◽  
pp. 827-834
Author(s):  
Kong Weicheng ◽  
Shen Hui ◽  
Gao Jiaxu ◽  
Wu Jie ◽  
Lu Yuling

Purpose This study aims to investigate the electrochemical corrosion performance of high velocity oxygen fuel (HVOF) sprayed WC–12Co coating in 3.5 Wt.% NaCl solution, which provided a guiding significance on the corrosion resistance of H13 hot work mould steel. Design/methodology/approach A WC–12Co coating was fabricated on H13 hot work mould steel using a HVOF, and the electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution was measured using open circuit potential (OCP), potentiodynamic polarization curve (PPC) and electrochemical impedance spectroscopy (EIS) tests. Findings The OCP and PPC of WC–12Co coating positively shift than those of substrate, its corrosion tendency and corrosion rate decrease to enhance its corrosion resistance. The curvature radius of capacitance curve on the WC–12Co coating is larger than that on the substrate, and the impedance and polarization resistance of WC–12Co coating increase faster than those of substrate, which reduces the corrosion process. Originality/value The electrochemical corrosion behaviors of WC–12Co coating and substrate in 3.5 Wt.% NaCl solution is first measured using OCP, PPC and EIS tests, which improve the electrochemical corrosion resistance of H13 hot work mould steel.


2013 ◽  
Vol 785-786 ◽  
pp. 101-104
Author(s):  
Chang Bin Shen

Similar welds composed of 5083 were produced by friction stir welding. In the solution of 0.2 M NaHSO3 and 0.6 M NaCl, with the addition of a given concentration sodium molybdate as the inhibitor, the electrochemical corrosion behaviors of the friction stir welds (FSW) and 5083 were comparatively investigated by potentiodynamic polarization curve tests and electrochemical impedance spectra (EIS) for different test temperatures (herein, 25°C,30°C,35°C,40°C). The results indicated that at 30°C, the anti-corrosion property of 5083 FSW weld and parent material was superior to those of the other temperatures.


2011 ◽  
Vol 311-313 ◽  
pp. 2309-2314 ◽  
Author(s):  
Wen Xia Zhu ◽  
Zhe Lü ◽  
Le Xin Wang ◽  
Xiao Yan Guan ◽  
Xin Yan Zhang

°Abstract. In order to develop new cathodes for reduced temperature SOFCs, Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Ag composite cathode was investigated in intermediate-temperature Solid Oxide Fuel Cells (IT-SOFCs). The XRD results suggested that no chemical reactions between BSCF and Ag in the composite cathode were found. The resistance measurements showed that the addition of Ag into BSCF improved electrical conductivity of pure BSCF, and the improved conductivity resulted in attractive cathode performance. In addition, electrochemical impedance spectra exhibited the better performance of BSCF-Ag composite cathodes than pure BSCF, e.g., the polarization resistance value of BSCF-Ag was only 0.36Ω cm2 at 650°C, which was nearly 80% lower than that of BSCF electrode. Polarization curves showed the overpotential decreased with the addition of Ag. The current density value of BSCF-Ag was 0.88Acm-2 under –120mV, about five times of that BSCF measured at 650°C. As a summary, compared to a pure BSCF cathode, it was found that adding Ag in the cathode enhanced the BSCF performance significantly.


2018 ◽  
Vol 47 (4) ◽  
pp. 350-359 ◽  
Author(s):  
Nivin M. Ahmed ◽  
Mostafa G. Mohamed ◽  
Reham H. Tammam ◽  
Mohamed R. Mabrouk

Purpose This study aims to apply novel anticorrosive pigments containing silica fume-phosphates (Si-Ph), which were prepared using core-shell technique by covering 80-90 per cent silica fume (core) with 10-20 per cent phosphates (shell) previously, to play dual functions simultaneously as anticorrosive pigments in coating formulations and as an anticorrosive admixture in concrete even if it is not present in the concrete itself. Two comparisons were held out to show the results of coatings on rebars containing core-shell pigments in concrete, and concrete admixtured with silica fume can perform a dual function as anticorrosive pigment and concrete admixture. The evaluation of corrosion protection efficiency of coatings containing core-shell pigments and those containing phosphates was performed. Design/methodology/approach Simple chemical techniques were used to prepare core-shell pigments, and their characterization was carried out in a previous work. These pigments were incorporated in solvent-based paint formulations based on epoxy resin. Different electrochemical techniques such as open-circuit potential and electrochemical impedance spectroscopy were used to evaluate the anticorrosive efficiency of the new pigments. Findings The electrochemical measurements showed that concrete containing coated rebars with core-shell pigments exhibited almost similar results to that of concrete admixtured with silica fume. Also, the anticorrosive performance of coatings containing Si-Ph pigments offered protection efficiency almost similar to that of phosphates, proving that these new pigments can perform both roles as anticorrosive pigment and concrete admixture. Originality/value Although the new Si-Ph pigments contain more than 80 per cent waste material, its performance can be compared to original phosphate pigments in the reinforced concrete.


2020 ◽  
Vol 39 (1) ◽  
pp. 340-350
Author(s):  
Mingjing Wang ◽  
Song Zeng ◽  
Huihui Zhang ◽  
Ming Zhu ◽  
Chengxin Lei ◽  
...  

AbstractCorrosion behaviors of 316 stainless steel (316 ss) and Inconel 625 alloy in molten NaCl–KCl–ZnCl2 at 700°C and 900°C were investigated by immersion tests and electrochemical methods, including potentiodynamic polarization and electrochemical impedance spectroscopy. X-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy were used to analyze the phases and microstructures of the corrosion products. Inconel 625 alloy and 316 ss exhibited high corrosion rates in molten chlorides, and the corrosion rates of these two alloys accelerated when the temperature increased from 700°C to 900°C. The results of the electrochemical tests showed that both alloys exhibited active corrosion in chloride molten salt, and the current density of 316 ss in chloride molten salt at 700°C was 2.756 mA/cm−2, which is about three times the value for Inconel 625 alloy; and the values of the charge transfer resistance (Rt) for Inconel 625 were larger than those for 316 ss. The corrosion of these two alloys is owing to the preferred oxidation of Cr in chloride molten salt, and the corrosion layer was mainly ZnCr2O4 which was loose and porous and showed poor adherence to metal.


Sign in / Sign up

Export Citation Format

Share Document