CFD simulation of empty fuel tanks separation from a trainer jet

2020 ◽  
Vol 92 (10) ◽  
pp. 1459-1468
Author(s):  
Aleksander Olejnik ◽  
Adam Dziubiński ◽  
Łukasz Kiszkowiak

Purpose This study aims to create 6-degree of freedom (SDOF) for computational fluid dynamics (CFD) simulations of body movement, and to validate using the experimental data for empty tank separation from I-22 Iryda jet trainer. The procedure has an ability to be modified or extended, to simulate, for example, a sequential release from the joints. Design/methodology/approach A set of CFD simulations are calculated. Both the SDOF procedure and the CFD simulation settings are validated using the wind tunnel data available for the aircraft. Findings The simulation using designed procedure gives predictable results, but offers availability to be modified to represent external forces, i.e. from body interaction or control system without necessity to model the control surfaces. Practical implications The procedure could be used to model the separation of external stores and design the deployment of anti-radar chaff, flares or ejection seats. Originality/value The work presents original work, caused by insufficient abilities of original SDOF procedure in ANSYS code. Additional value is the ability of the procedure to be easily modified.

2013 ◽  
Author(s):  
Ryan G. Coe ◽  
Wayne L. Neu

The development of vehicle maneuvering simulations based within computational fluid dynamics (CFD) environments demands that vehicle control surfaces be dynamically deflected during such simulations. This paper details the process of developing and testing CFD simulation methods that allow for the deflection of a specific AUV’s control surfaces. This task is made particularly challenging by the geometry of the AUV, as its moving control surfaces fit very closely to stationary fixed strakes and the AUV’s hull (a fairly common trait among this class of vehicles). After ruling out embedded and deformable mesh approaches, an overset mesh method is applied. Steady-state simulations with this overset mesh show general agreement with static mesh simulations. The two approaches do, however, highlight the mesh sensitivity of CFD simulations in their ability to predict the onset of stall.


Author(s):  
Andrea Cremasco ◽  
Wei Wu ◽  
Andreas Blaszczyk ◽  
Bogdan Cranganu-Cretu

Purpose The application of dry-type transformers is growing in the market because the technology is non-flammable, safer and environmentally friendly. However, the unit dimensions are normally larger and material costs become higher, as no oil is present for dielectric insulation or cooling. At designing stage, a transformer thermal model used for predicting temperature rise is fundamental and the modelling of cooling system is particularly important. This paper aims to describe a thermal model used to compute dry transformers with different cooling system configurations. Design/methodology/approach The paper introduces a fast-calculating thermal and pressure network model for dry-transformer cooling systems, preliminarily verified by analytical methods and advanced CFD simulations, and finally validated with experimental results. Findings This paper provides an overview of the network model of dry-transformer cooling system, describing its topology and its main variants including natural or forced ventilation, with or without cooling duct in the core, enclosure with roof and floor ventilation openings and air barriers. Finally, it presents a formulation for the new heat exchanger element. Originality/value The network approach presented in this paper allows to model efficiently the cooling system of dry-type transformers. This model is based on physical principles rather than empirical assessments that are valid only for specific transformer technologies. In comparison with CFD simulation approach, the network model runs much faster and the accuracies still fall in acceptable range; therefore, one is able to utilize this method in optimization procedures included in transformer design systems.


2020 ◽  
Vol 92 (3) ◽  
pp. 418-427 ◽  
Author(s):  
Nayhel Sharma ◽  
Rakesh Kumar

Purpose The purpose of this paper is to establish a freestream computational fluid dynamics (CFD) model of a three-dimensional non-spinning semi-cylindrical missile model with a single wrap around fin in Mach 2.70-3.00M range and 0° angle of attack, and ultimately establishing itself for future research study. Design/methodology/approach In this study, the behaviour of flow around the fin was investigated using a κ-ϵ turbulence model of second-order of discretization. This was done using a highly structured mesh. Additionally, an inviscid CFD simulation involving the same boundary conditions have also been carried out for comparison. Findings The obtained values of aerodynamic coefficients and pressure contours visualizations are compared against their experimental and computational counterparts. A typical missile aerodynamic characteristic trend can be seen in the current CFD. Practical implications The predicted values of the aerodynamic coefficients of this single fin model have also been compared to those of the full missile body comprising of four fins from the previous research studies, and a similar aerodynamic trend can be seen. Originality/value This study explores the possibility of the use of turbulence modelling in a single fin model of a missile and provides a basic computational model for further understanding the flow behaviour near the fin.


2018 ◽  
Vol 240 ◽  
pp. 05005
Author(s):  
Milind Devle ◽  
Ankur Garg ◽  
Darci Cavali

In general a multi-door refrigerator machine compartment comprises of fan, condenser, compressor, control box, drain tray, and drain tubes. The performance of machine compartment depends upon the efficiency of heat extraction or heat exchange from heat generating components such as condenser and compressor. The efficiency of heat exchange can be improved by addressing two major factors, namely (1) Air bypass and (2) Hot air recirculation. The hot air recirculation in the machine compartment for builtin multi-door refrigerator configuration is the focus of this study. The results from Computational Fluid Dynamics (CFD) simulations show that efficiency of heat exchange for built-in application is lower than that for free-standing configuration. Recirculation of hot air and reduction in airflow are the two major factors which contribute towards the variation in machine compartment performance. The CFD simulations were coupled with Partial Factorial Design of Experiment (DoE) approach to systematically investigate the effect of variables such as (a) side gap and top gap between kitchen cabinetry and the refrigerator, (b) the baffle/flap (i.e. back and bottom of machine compartment) on the performance effectiveness of machine compartment. The results of the simulation provided critical design improvement directions resulting in performance improvement. Furthermore, the CFD simulation results were also compared to test data and the results compared favourably.


2019 ◽  
Vol 30 (9) ◽  
pp. 4185-4201
Author(s):  
Daniel Klatt ◽  
Michael Proff ◽  
Robert Hruschka

Purpose The present work aims to investigate the capabilities of accurately predicting the six-degrees-of-freedom (6DoF) trajectory and the flight behavior of a flare-stabilized projectile using computational fluid dynamics (CFD) and rigid body dynamics (RBD) methods. Design/methodology/approach Two different approaches are compared for calculating the trajectory. First, the complete matrix of static and dynamic aerodynamic coefficients for the projectile is determined using static and dynamic CFD methods. This discrete database and the data extracted from free-flight experiments are used to simulate flight trajectories with an in-house developed 6DoF solver. Second, the trajectories are simulated solving the 6DoF motion equations directly coupled with time resolved CFD methods. Findings Virtual fly-out simulations using RBD/CFD coupled simulation methods well reproduce the motion behavior shown by the experimental free-flight data. However, using the discrete database of aerodynamic coefficients derived from CFD simulations shows a slightly different flight behavior. Originality/value A discrepancy between CFD 6DoF/RBD simulations and results obtained by the MATLAB 6DoF-solver based on discrete CFD data matrices is shown. It is assumed that not all dynamic effects on the aerodynamics of the projectile are captured by the determination of the force and moment coefficients with CFD simulations based on the classical aerodynamic coefficient decomposition.


Author(s):  
Brian Dotson ◽  
Kent Eshenberg ◽  
Chris Guenther ◽  
Thomas O’Brien

The design of high-efficiency lower-emission coal-fed power plants is facilitated by the extensive use of computational fluid dynamics (CFD) simulations. This paper describes work conducted at the National Energy Technology Laboratory (NETL) and Pittsburgh Supercomputing Center (PSC) to provide an environment for the immersive three-dimensional visualization of CFD simulation results. A low-cost high-resolution projection system has been developed in the visualization lab at NETL. This multi-wall system consists of four projection screens, three of which are tiled into four quadrants. The graphics for the multi-wall system are rendered using a cluster of eight personal computers. A high-level visualization interface named Mavis has also been developed to combine the powerful 3D modules of OpenDX with methods developed at NETL for studying multiphase CFD data. With Python, a completely new OpenDX user interface was built that extends and simplifies the features of a basic graphics library.


Author(s):  
Kirk W. Dotson ◽  
William A. Engblom

Launch vehicles composed of three bodies can experience the shedding of vortices due to strong crossflow acceleration towards the center body, or core. Upon formation, the vortices obstruct the freestream flow, which diverts the local angle of attack towards the opposite side of the core, and a new pair of vortices are formed. This alternate vortex-pair shedding can induce significant pitch structural responses during transonic flight. Computational fluid dynamics (CFD) simulations have been used to illustrate the phenomenon and to generate forcing functions for structural dynamic analyses. Structural responses from these analyses are in good agreement with flight responses. This success suggests that CFD can be used for preflight predictions of the phenomenon. It also indicates that CFD can be used to supplement wind tunnel data when the test instrumentation does not adequately resolve the alternate vortex-pair shedding.


Author(s):  
Pál Schmitt ◽  
Christian Windt ◽  
Josh Davidson ◽  
John V. Ringwood ◽  
Trevor Whittaker

Computational Fluid Dynamics (CFD) simulations, based on Reynolds Averaged Navier Stokes (RANS) models, are a useful tool for a wide range of coastal and offshore applications, providing a high fidelity representation of the underlying hydrodynamic processes. Generating input waves in the CFD simulation is performed by a numerical wavemaker (NWM), with a variety of different NWM methods existing for this task. While NWMs, based on impulse source methods, have been widely applied for wave generation in depth averaged, shallow water models, they have not seen the same level of adoption in the more general RANS based CFD simulations, due to difficulties in relating the required impulse source function to the resulting free surface elevation for non-shallow water cases. This paper presents an implementation of an impulse source wavemaker, which is able to self-calibrate the impulse source function to produce a desired wave series in deep or shallow water at a specific point in time and space. Example applications are presented, for a numerical wave tank (NWT), based on the opensource CFD software OpenFOAM, for wave packets in deep and shallow water, highlighting the correct calibration of phase and amplitude. Also, the suitability for cases requiring very low reflection from NWT boundaries is demonstrated. Possible issues in the use of the method are discussed and guidance for good application is given.


Author(s):  
Mobina Mohammadikharkeshi ◽  
Mazdak Parsi ◽  
Ramin Dabirian ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Abstract Slug flow, which commonly occurs in the petroleum industry, is not always a desired flow pattern due to production operation problems it may cause in pipelines and processing facilities. To mitigate these problems, flow conditioning devices such as multiphase flow manifolds and slug catchers are used, where dissipation of slugs occurs in downward flow or in larger diameter pipe sections. Tee-junctions are important parts of these flow conditioning devices. In this work, Computational Fluid Dynamics (CFD) simulations are conducted using ANSYS/FLUENT 17.2 to investigate slug dissipation in an Enlarged Impacting Tee-Junction (EIT). An Eulerian–Eulerian MultiFluid VOF transient model in conjunction with the standard k-ε turbulent model is used to simulate slug dissipation in an EIT geometry. The EIT consists of a 0.05 m ID 10 m long inlet, which is connected to the center of a 0.074 m ID 5.5 m long section that forms the EIT branches. Moreover, experimental data are acquired on slug dissipation lengths in a horizontal EIT with a similar geometry as in the CFD simulations. The CFD results include the mean void fraction and cross-sectionally averaged void fraction time series in the EIT for different gas and liquid velocities. These results provide the inlet slug length and dissipation length in the EIT branches. The CFD results are evaluated against the experimental data demonstrating that the slug dissipation occurring in EIT branches can be predicted by simulation.


2005 ◽  
Author(s):  
Zuoxin Hao

Segregation in particulate multiphase flow with binary solid mixture has extensive applications in industrial separation processes. Up to now there have been few attempts towards numerical simulation of segregation in particulate multiphase flow with binary mixture due to complexity of the problem. In view of this, the primary objective of present work is to simulate the problem by computational fluid dynamics (CFD) and to validate by comparison with experimental measurements. Eulerian-Eulerian approach, incorporating the granular temperature, an essential ingredient in the solids pressure and solids viscosity formulation, was used to model the flow field of multiphase flow and was solved by Fluent 6.0. The CFD simulation results have been validated by experiments of liquid fluidization of binary solid mixtures. Validation results show that CFD simulation predict segregation and solid volume fraction profile precisely, and in addition, it can supply a more realistic prediction of other hydrodynamic features of the multiphase flow, such as velocity vector of all phases and pressure drop. The success of such CFD simulations opens doors for many potential studies.


Sign in / Sign up

Export Citation Format

Share Document