Transverse FIV suppression of square cylinder using two control rods of varying size and distance in lock-in and galloping regions

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. D. Farahani ◽  
Amir Hossein Rabiee

Purpose) In this study, for the first time, the efficacy of control rods for full suppression of vortex-induced vibrations (VIV) and galloping of an elastically supported rigid square cylinder that vibrates freely in the cross-flow direction is investigated. Design/methodology/approach To this aim, two small control rods are placed at constant angles of ± 45° relative to the horizontal axis and then the influence of diameter and spacing ratios on the oscillation and hydrodynamic response along with the vortex structure behind the cylinder is evaluated in the form of nine different cases in both VIV and galloping regions. Findings The performed simulations show that using the configuration presented in this study results in full VIV suppression for the spacing ratios G/D = 0.5, 1 and 1.5 at the diameter ratios d/D = 0.1, 0.2 and 0.3 (D: diameter of square cylinder, G: distance between rods and cylinder, d: diameter of rods). On the contrary, a perfect attenuation of galloping is only achieved at the largest diameter (d/D = 0.3) and the smallest spacing ratio (G/D = 0.5). In general, for both VIV and galloping regions, with increasing diameter ratio and decreasing spacing ratio, the effect of the control rods wake in the vortex street of square cylinder gradually increases. This trend carries on to the point where the vortex shedding is completely suppressed and only the symmetric wake of control rods is observed. Originality/value So far, the effect of rod control on VIV of a square cylinder and its amplitude of oscillations has not been investigated.

2012 ◽  
Vol 204-208 ◽  
pp. 4598-4601
Author(s):  
Jie Li Fan ◽  
Wei Ping Huang

The two-degrees-of-freedom of vortex-induced vibration of circular cylinders is numerically simulated with the software ANSYS/CFX. The VIV characteristic, in the two different conditions (A/D=0.07 and A/D=1.0), is analyzed. When A/D is around 0.07, the amplitude ratio of the cylinder’s VIV between in-line and cross-flow direction in the lock-in is lower than that in the lock-out. The in-line frequency is twice of that in cross-flow direction in the lock-out, but in the lock-in, it is the same as that in cross-flow direction and the same as that of lift force. When A/D is around 1.0, the amplitude ratio of the VIV between in-line and cross-flow in the lock-in is obviously larger than that in the lock-out. Both in the lock-in and in the lock-out, the in-line frequency is twice of that in cross-flow direction.


Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu

Vortex-induced vibrations of two elastically mounted and rigidly coupled circular cylinders in side-by-side arrangement in steady flow are investigated numerically. The vibration of the cylinders is limited to the cross-flow direction only. The three-dimensional Navier-Stokes equations are solved using the Petrov-Galerkin Finite element method and the equation of motion is solved using the fourth order Runge Kutta method. It is well known that when the gap between two stationary side-by-side cylinders is very small, the flow between the two cylinders is biased towards one cylinder and the lift force on each cylinder is significantly smaller than that of an isolated single cylinder. The aim of this study is to investigate the effect of a small gap ratio of 0.5 between the two cylinders on the lock-in regime and the amplitude of the vibration of two side-by-side cylinders in a fluid flow. Simulations are carried out for a constant mass ratio of 2, a constant Reynolds number of 1000 and a range of reduced velocities. It is found that in the lock-in range of the reduced velocity, the two cylinders vibrate about their balance position with high amplitudes. Outside the lock-in regime the flow from the gap becomes biased towards one cylinder, which is similar to that from the gap between stationary cylinders.


Author(s):  
Remi Bourguet ◽  
Michael S. Triantafyllou ◽  
Michael Tognarelli ◽  
Pierre Beynet

The fluid-structure energy transfer of a tensioned beam of length to diameter ratio 200, subject to vortex-induced vibrations in linear shear flow, is investigated by means of direct numerical simulation at three Reynolds numbers, from 110 to 1,100. In both the in-line and cross-flow directions, the high-wavenumber structural responses are characterized by mixed standing-traveling wave patterns. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the region of high current where the lock-in condition is established, i.e. where vortex shedding and cross-flow vibration frequencies coincide. However, the energy input is not uniform across the entire lock-in region. This can be related to observed changes from counterclockwise to clockwise structural orbits. The energy transfer is also impacted by the possible occurrence of multi-frequency vibrations.


2011 ◽  
Vol 677 ◽  
pp. 342-382 ◽  
Author(s):  
REMI BOURGUET ◽  
GEORGE E. KARNIADAKIS ◽  
MICHAEL S. TRIANTAFYLLOU

We investigate the in-line and cross-flow vortex-induced vibrations of a long cylindrical tensioned beam, with length to diameter ratio L/D = 200, placed within a linearly sheared oncoming flow, using three-dimensional direct numerical simulation. The study is conducted at three Reynolds numbers, from 110 to 1100 based on maximum velocity, so as to include the transition to turbulence in the wake. The selected tension and bending stiffness lead to high-wavenumber vibrations, similar to those encountered in long ocean structures. The resulting vortex-induced vibrations consist of a mixture of standing and travelling wave patterns in both the in-line and cross-flow directions; the travelling wave component is preferentially oriented from high to low velocity regions. The in-line and cross-flow vibrations have a frequency ratio approximately equal to 2. Lock-in, the phenomenon of self-excited vibrations accompanied by synchronization between the vortex shedding and cross-flow vibration frequencies, occurs in the high-velocity region, extending across 30% or more of the beam length. The occurrence of lock-in disrupts the spanwise regularity of the cellular patterns observed in the wake of stationary cylinders in shear flow. The wake exhibits an oblique vortex shedding pattern, inclined in the direction of the travelling wave component of the cylinder vibrations. Vortex splittings occur between spanwise cells of constant vortex shedding frequency. The flow excites the cylinder under the lock-in condition with a preferential in-line versus cross-flow motion phase difference corresponding to counter-clockwise, figure-eight orbits; but it damps cylinder vibrations in the non-lock-in region. Both mono-frequency and multi-frequency responses may be excited. In the case of multi-frequency response and within the lock-in region, the wake can lock in to different frequencies at various spanwise locations; however, lock-in is a locally mono-frequency event, and hence the flow supplies energy to the structure mainly at the local lock-in frequency.


Author(s):  
Murilo M. Cicolin ◽  
Gustavo R. S. Assi

Experiments have been carried out on models of rigid circular cylinders fitted with three different types of permeable meshes to investigate their effectiveness in the suppression of vortex-induced vibrations (VIV). Measurements of amplitude of vibration and drag force are presented for models with low mass and damping which are free to respond in the cross-flow direction. Results for two meshes made of ropes and cylindrical tubes are compared with the VIV response of a bare cylinder and that of a known suppressor called the “ventilated trousers” (VT). All three meshes achieved an average 50% reduction of the peak response when compared with that of the bare cylinder. The sparse mesh configuration presented a similar behaviour to the VT, while the dense mesh produced considerable VIV response for an indefinitely long range of reduced velocity. All the three meshes have increased drag when compared with that of the bare cylinder. Reynolds number ranged from 5,000 to 25,000 and reduced velocity was varied between 2 and 15.


2003 ◽  
Vol 125 (3) ◽  
pp. 551-560 ◽  
Author(s):  
Z. J. Wang ◽  
Y. Zhou ◽  
R. M. C. So

Interference effects on vortex-induced vibrations of two side-by-side elastic cylinders, fixed at both ends (with no deflection and displacement) in a cross-flow, were experimentally investigated. The dynamic responses of the cylinders were measured using two fiber-optic Bragg grating (FBG) sensors. Simultaneously, a single hot wire was used to measure the velocity in the wake. It has been previously observed that violent resonance occurs when transverse cylinder spacing ratio, T/d, is either large (>2.0) or small (<1.2), but not for intermediate cylinder spacing, i.e., T/d=1.2∼2.0. This work aims to improve the understanding of the physics behind this observation, and mostly focuses on the fluid-structure interaction in the flow regime of intermediate cylinder spacing. It is well known that in this flow regime the fluid dynamics around one cylinder is totally different from that around the other; the vortical structures are characterized by different dominant frequencies, i.e., about 0.1 and 0.3 (normalized), respectively. The present data indicates that the vortical structures at these frequencies are either weak or different in the formation process from the case of T/d>2.0 or T/d<1.2, thus resulting in a weak excitation and subsequently an absence of violent resonance. The interrelationship between the vortical structures generated by the two cylinders is also investigated and interpreted in terms of different vortex generation mechanisms. The different fluid dynamics around each cylinder is further found to be responsible for a deviation between the natural frequencies of the combined fluid-cylinder system associated with each cylinder.


Author(s):  
F. Van den Abeele ◽  
F. Boël ◽  
M. Hill

Vortex induced vibration is a major cause of fatigue failure in submarine oil and gas pipelines and steel catenary risers. Even moderate currents can induce vortex shedding, alternately at the top and bottom of the pipeline, at a rate determined by the flow velocity. Each time a vortex sheds, a force is generated in both the in-line and cross-flow direction, causing an oscillatory multi-mode vibration. This vortex induced vibration can give rise to fatigue damage of submarine pipeline spans, especially in the vicinity of the girth welds. In this paper, an integrated numerical framework is presented to predict and identify free spans that may be vulnerable to fatigue damage caused by vortex induced vibrations (VIV). An elegant and efficient algorithm is introduced to simulate offshore pipeline installation on an uneven seabed. Once the laydown simulation has been completed, the free spans can be automatically detected. When the fatigue screening for both inline and cross-flow VIV indicates that a particular span may be prone to vortex induced vibrations, a detailed fatigue analysis is required. Amplitude response models are constructed to predict the maximum steady state VIV amplitudes for a given pipeline configuration (mechanical properties) and sea state (hydrodynamic parameters). The vibration amplitudes are translated into corresponding stress ranges, which then provide an input for the fatigue analysis. A case study from the offshore industry is presented, and sensitivity analyses are performed to study the influence of the seabed conditions, where special emphasis is devoted on the selection of pipe soil interaction parameters.


Author(s):  
Gustavo R. S. Assi ◽  
Peter W. Bearman

Experiments have been carried out on two-dimensional devices fitted to a rigid length of circular cylinder to investigate the efficiency of pivoting parallel plates as wake-induced vibration suppressors. Measurements are presented for a circular cylinder with low mass and damping which is free to respond in the cross-flow direction. It is shown how VIV and WIV can be practically eliminated by using free to rotate parallel plates on a pair of tandem cylinders. Unlike helical strakes, the device achieves VIV suppression with 33% drag reduction when compare to a pair of fixed tandem cylinders at the same Reynolds number. These results prove that suppressors based on parallel plates have great potential to suppress VIV and WIV of offshore structures with considerable drag reduction.


Author(s):  
Shixiao Fu ◽  
Jungao Wang ◽  
Rolf Baarholm ◽  
Jie Wu ◽  
C. M. Larsen

VIV in oscillatory flow is experimentally investigated in the ocean basin. The flexible test cylinder was forced to harmonically oscillate in various combinations of amplitude and period. VIV responses at cross flow direction are investigated using modal decomposition and wavelet transformation. The results show that VIV in oscillatory flow is quite different from that in steady flow; novel features such as ‘intermittent VIV’, amplitude modulation, mode transition are observed. Moreover, a VIV developing process including “Building-Up”, “Lock-In” and “Dying-Out” in oscillatory flow, is further proposed and analyzed.


Author(s):  
Alexandre Cinello ◽  
François Pétrié ◽  
Thierry Rippol ◽  
Bernard Molin ◽  
Guillaume Damblans

Galloping may take place for non-circular cross sections, such as an ice-coated electric power line or a riser bundle, under current action. This type of instabilities occurs at lower frequency than Vortex Induced Vibrations but with unbounded amplitude, and might be detrimental for riser integrity. In a recent joint industry project, the CITEPH “Gallopan” project, galloping instabilities were investigated for two types of cylinders: an academic square cylinder and a generic riser tower cross section. Model tests and numerical computations were performed to assess the propensity of both cylinders to gallop. Experiments on the square cylinder are reported here. Three types of tests were performed in steady flow: loads measurement on fixed cylinder, at various headings; loads measurement on the cylinder with over imposed cross-flow harmonic oscillations; free transverse oscillations. By using analytical calculations, the ability to predict galloping instability occurrence and amplitude, of each of the three above methods, was compared. Compared to typical results found in literature, these experiments were conducted at a larger scale, and thus with Reynolds number closer to on-site values, i.e. over 105.


Sign in / Sign up

Export Citation Format

Share Document