A model for thermal comfort assessment of naturally ventilated housing in the hot and dry tropical climate

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arnaud Louis Sountong-Noma Ouedraogo ◽  
Adamah Messan ◽  
Daniel Yamegueu ◽  
Yezouma Coulibaly

PurposeA major challenge faced by West Africa is to find comfortable housing as a result of climate change and population growth. The climatic adaptation of buildings and their indoor environment become an essential condition for maintaining the health and productivity of the occupants. This paper proposes a model to assess the thermal comfort of naturally ventilated buildings in hot and dry climates in Burkina Faso.Design/methodology/approachThe proposed method is an adaptive model which relies on a combination of parameters such as the operative temperature, the new effective temperature and the basic parameters of thermal comfort. It consists in proposing the zones of thermal comfort on the diagram of the humid air for each climatic region.FindingsA decision-making tool is set up for evaluating the comfort of buildings to better consider the bio-climatic concept through a long-term comfort index. This comfort index is defined and is used to assess the degree of thermal discomfort for various types of housing. Two natural ventilation pilot buildings located in Ouagadougou were considered. The results show that the pilot building whose wall are is made of Earth blocks achieves 26.4% of thermal comfort while the building made of hollow cement block achieves 25.8% of thermal comfort.Originality/valueThe decision-making tool proposed in the present study allow building stakeholders to better and easily design, assess and improve the thermal environment of buildings.

2020 ◽  
Vol 2 (1) ◽  
pp. 82
Author(s):  
Agung Prabowo

Abstract -Thermal comfort is a state of mind that expresses satisfaction with the thermal environment. There are two main categories in the effort to obtain a comfort index; empirical and analytical. Empirical is based on social surveys, while analysis is based on the physics principle of heat flow.Bandung city is one of the historical cities in Indonesia which has many historical heritage buidings. One of them which is commonly known as colonial buildings in Bandung is Lautze 2 Mosque, located at Tamblong Street in the city center of Bandung. This research was conducted to analyze the thermal comfort in the Lautze 2 Mosque Bandung. The analytical method used in this study is a quantitative research method by measuring the main factors namely air temperature, air humidity and air velocity. The main factors become obstacles to get thermal comfort data at the Lautze 2 Mosque Bandung is the location of buildings located in areas with tropical climate conditions with high air temperatures, high air humidity, and low air velocitys.The research conclude that thermal comfort in the Lautze 2 Mosque Bandung building can be categorized as uncomfortable, it can be seen from the measurement results of related factors, namely the temperature and humidity that exceeds the comfort limit and the low air velocity in the building becomes an obstacle to obtain thermal comfort. Keywords: colonial buildings, mosque, thermal comfort, tropical climate.


2009 ◽  
Vol 27 (1) ◽  
pp. 46-61 ◽  
Author(s):  
Sara J. Wilkinson ◽  
Kimberley James ◽  
Richard Reed

PurposeThis paper seeks to establish the rationale for existing office building adaptation within Melbourne, Australia, as the city strives to become carbon neutral by 2020. The problems faced by policy makers to determine which buildings have the optimum adaptation potential are to be identified and discussed.Design/methodology/approachThis research adopts the approach of creating a database of all the buildings in the Melbourne CBD including details of physical, social, economic and technological attributes. This approach will determine whether relationships exist between attributes and the frequency of building adaptation or whether triggers to adaptation can be determined.FindingsThis research provided evidence that a much faster rate of office building adaptation is necessary to meet the targets already set for carbon neutrality. The findings demonstrate that a retrospective comprehensive examination of previous adaptation in the CBD is a unique and original approach to determining the building characteristics associated with adaptation and whether triggers can be identified based on previous practices. The implication is that a decision‐making tool should be developed to allow policy makers to target sectors of the office building stock to deliver carbon neutrality within the 2020 timeframe.Practical implicationsDrastic reductions in greenhouse gas emissions are required to mitigate global warming and climate change and all stakeholders should be looking at ways of reducing emissions from existing stock.Originality/valueThis paper adds to the existing body of knowledge by raising awareness of the way in which the adaptation of large amounts of existing stock can be fast tracked to mitigate the impact of climate change and warming associated with the built environment, and in addition it establishes a framework for a decision‐making tool for policy makers.


2014 ◽  
Vol 27 (3) ◽  
pp. 465-488 ◽  
Author(s):  
Warwick Funnell ◽  
Andrew Holden ◽  
David Oldroyd

Purpose – This paper examines the nature and function of cost accounting at the Newcastle Infirmary, a large voluntary provincial hospital, established in 1751. In particular, the paper adds to the literature on accounting within early voluntary hospitals by identifying the relative contributions of the costing system to planning and controlling the operations, assisting decision making and holding managers accountable for their performance. Design/methodology/approach – The paper relies primarily on original documents preserved in the archives of the Newcastle Infirmary. Findings – Although evidence was found of quite sophisticated costing systems, the findings suggest that the majority of the information was produced ex post by the hospital management to demonstrate good stewardship and to engender financial support. Research limitations/implications – More cases are needed of other hospitals to ascertain how typical the Newcastle Infirmary was of the voluntary hospital sector in the nineteenth century. Originality/value – Although there are other studies of accounting within British voluntary hospitals, and studies of the use of accounting to drive decision making in profit-making organisations during the nineteenth century, none have investigated the use of accounting as a decision-making tool in a voluntary hospital.


2011 ◽  
Vol 20 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Baizhan Li ◽  
Wei Yu ◽  
Meng Liu ◽  
Nan Li

Yangtze River Valley is situated within the Hot Summer and Cold Winter zone, and residents in this region of China would require HVAC system to alleviate thermal comfort conditions, although this is tempered by the Design Code (DBJ50-071-2007) for energy efficiency. A 1-year survey of about 200 residential homes was carried out in eight cities covering the breadth of the region. The acceptable temperature range for the residents in this area was 16.3—28.1°C and the thermal neutral temperature was found to be 27.6°C in summers and 17.5°C in winters. People in different area can vary in their adaptability and comfortableness. Therefore, there is a need to investigate the national comfort parameter introduced in the Code for Design of Heating and Ventilation and Air Conditioning (GB50019-2003). The results found that if air-conditioning system was set to 27.5°C instead of 26°C as required by GBJ19-87: Design Standard of Heating and Ventilation and Air Conditioning, a 16.5% saving of energy consumption could be achieved. The findings demonstrated the role of natural ventilation in the expansion of the thermal comfort zone for the residents, especially during the summer seasons. A climatic adaptability model has been established by this study to contribute to the passive climatic design strategies for a better economic and energy efficiency of buildings.


2011 ◽  
Vol 361-363 ◽  
pp. 1056-1060 ◽  
Author(s):  
Bao Lin ◽  
Xue Ting Wang ◽  
Xiao Hu

Because of the relatively narrow space and high density distribution of the passengers, the bus interior environment deteriorates in summer. Natural ventilating introduces a fresh natural freeze, provides the bus interior with appropriate distribution of air supply temperature and velocity field. Making good use of natural ventilation is an operating strategy ideal for improving passengers’ satisfaction, which is considered as an environmental friendly and cost effective approach. Based on CFD numerical simulation, with a whole-domain approach, this paper predicts air flow and thermal comfort in naturally ventilated bus. The outside and inside airflow is modelled simultaneously and within the same computational domain. The thermal environment in different parts of the bus interior is compared. Different vehicle velocities and conditions of windows are taken into account, analysis are made regarding to the effect of both of them on the interior thermal comfort. The result shows, air disturbance at the bus rear parts are intenser than the other parts with better thermal satisfaction; the quality of air flow in different parts makes the temperature difference in bus achieve as high as 3°C; the use of roof openings distributes the temperature more evenly.


2012 ◽  
Vol 512-515 ◽  
pp. 2882-2886
Author(s):  
Shi Jie Wu ◽  
Zeng Feng Yan

Natural ventilation is an important role to improve the residential building indoor thermal environment in summer. This paper use Energy Plus to simulate indoor thermal environment and use CFD to simulate indoor air flow for Xi’an residential building, analysis the influence that different ventilation mode for indoor thermal environment factors. Then with the simulated result of PMV-PPD value to estimate indoor thermal comfort. Proved night ventilation is necessary in residential building in Xi’an and effectiveness to improve indoor thermal comfort.


2016 ◽  
Vol 34 (4/5) ◽  
pp. 427-445 ◽  
Author(s):  
Baharuddin Hamzah ◽  
Muhammad Taufik Ishak ◽  
Syarif Beddu ◽  
Mohammad Yoenus Osman

Purpose The purpose of this paper is to analyse thermal comfort and the thermal environment in naturally ventilated classrooms. Specifically, the aims of the study were to identify the thermal environment and thermal comfort of respondents in naturally ventilated university classrooms and compare them with the ASHRAE and Indonesian National Standard (SNI); to check on whether the predicted mean vote (PMV) model is applicable or not for predicting the thermal comfort of occupants in naturally ventilated university classrooms; and to analyse the neutral temperature of occupants in the naturally ventilated university classrooms. Design/methodology/approach The study was carried out at the new campus of Faculty of Engineering, Hasanuddin University, Gowa campus. A number of field surveys, which measured thermal environments, namely, air temperature, mean radiant temperature (MRT), relative humidity, and air velocity, were carried out. The personal activity and clothing properties were also recorded. At the same time, respondents were asked to fill a questionnaire to obtain their thermal sensation votes (TSV) and thermal comfort votes (TCV), thermal preference, and thermal acceptance. A total of 118 respondents participated in the study. Before the survey was conducted, a brief explanation was provided to the participants to ensure that they understood the study objectives and also how to fill in the questionnaires. Findings The results indicated that the surveyed classrooms had higher thermal environments than those specified in the well-known ASHRAE standard and Indonesian National Standard (SNI). However, this condition did not make respondents feel uncomfortable because a large proportion of respondents voted within the comfort zone (+1, 0, and −1). The predictive mean vote using the PMV model was higher than the respondents’ votes either by TSV or by TCV. There was a huge difference between neutral temperature using operative temperature (To) and air temperature (Ta). This difference may have been because of the small value of MRT recorded in the measured classrooms. Originality/value The research shows that the use of the PMV model in predicting thermal comfort in the tropic region might be misleading. This is because PMV mostly overestimates the TSV and TCV of the respondents. People in the tropic region are more tolerant to a higher temperature. On the basis of this finding, there is a need to develop a new thermal comfort model for university classrooms that is particularly optimal for this tropical area.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Subhashini S. ◽  
Thirumaran Kesavaperumal ◽  
Masa Noguchi

Purpose Occupants dwelling in hot climatic regions of India for a longer term are tolerable to high temperature levels than predicted by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) standards. The purpose of this study is to evaluate the thermal sensations (TS) and neutral temperature of the occupants in naturally ventilated (NV) and air-conditioned (AC) classrooms of two technical institutions located in the same premises in the suburbs of Madurai. The main focus of this study is to understand the occupants’ behaviour in response to the thermal conditions of the educational buildings particularly in the warm and humid climatic zone of Madurai. Design/methodology/approach This research collected data through field studies. The data included 383 survey questionnaires from NV classrooms and 285 from AC classrooms, as well as on-site measurements of interior and exterior weather conditions. The TS results show that the students preferred well-designed NV classrooms than AC classrooms. A new adaptive comfort equation derived from this study can be applied to NV classrooms in warm and humid climates where mean outdoor temperature exceeds 40°C. Findings The neutral temperature derived for NV classrooms in Madurai ranged from 29°C to 34°C. Thus, the occupants in the NV classrooms of the higher learning educational institutions in the warm and humid climatic region of Madurai can adapt well to higher indoor temperature levels than predicted by ASHRAE comfort levels with minimum adjustments. Research limitations/implications The study was limited to only occupants in two premier higher learning technical educational institutions located in Madurai region within 5–10 km within the city limits to understand the implications of microclimate with respect to the urban context. Thus, further research is required to examine the tendency under local conditions in other regions beyond those applied to this study. Social implications The findings of this study showed that occupants in higher learning educational intuitions in Madurai prefer NV classrooms than AC classrooms. Therefore, with rising demands of energy use for mechanical ventilation and the associated high cost for running AC buildings, architects should prioritize the design of energy efficient buildings through the optimal use of passive design strategies for ventilation and thermal comfort. This study gives a base data for architects to understand the adaptive limitations of occupants and design NV buildings that can promote natural ventilation and provide better thermal environments that can help increase the productivity of students. Originality/value This paper was an attempt to develop the adaptive comfort model for NV classrooms in Madurai regions. There has been no attempt to identify the adaptive comfort levels of occupants in higher learning technical educational institutions located in warm and humid climatic region of India.


2020 ◽  
Vol 3 (1) ◽  
pp. p1
Author(s):  
Jad Hammoud ◽  
Elise Abi Rached

The increasing of energy demands has considerably increased the requirements for new and traditional buildings in different climate zones. Unprecedented heat waves have increased climate temperature, in particular, in moderate climate zones such as Lebanon. In Beirut, only the residential sector consumes 50% of total electricity consumption. HVAC (Heating, Ventilation and Air conditioning) systems are used to reach acceptable thermal comfort levels in the new residential buildings. In case of the traditional bourgeoisie houses in Beirut, there are no discussions about the use of HVAC systems to achieve the required thermal comfort level. Thus, to reach an acceptable thermal comfort level, these houses which already contain natural ventilation system shall adapt the modern thermal comfort requirements and thermal comfort strategies and technologies where their architectural features and existing materials condition the available solutions. In order to identify the best options within the possible intervention lines (envelopes, passive strategies, equipment, renewable energy systems), it is necessary to perceive the real performance of this type of houses. In this context, the article presents the results of the study of thermal performance and comfort in a three case studies located in Beirut. Detailed field data records collected are analyzed, with a view to identify the indoor thermal environment with respect to outdoor thermal environment in different seasons. Monitoring also included measurement of hygrothermal parameters and surveys of occupant thermal sensation.


Sign in / Sign up

Export Citation Format

Share Document