Assessing the impacts of climate change to financial stability: evidence from China

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhonglu Liu ◽  
Haibo Sun ◽  
Songlin Tang

Purpose Climate change not only causes serious economic losses but also influences financial stability. The related research is still at the initial stage. This paper aims to examine and explore the impact of climate change on financial stability in China. Design/methodology/approach This paper first uses vector autoregression model to study the impact of climate change to financial stability and applies NARDL model to assess the nonlinear asymmetric effect of climate change on China’s financial stability using monthly data from 2002 to 2018. Findings The results show that both positive and negative climate shocks do harm to financial stability. In the short term, the effect of positive climate shocks on financial stability is greater than the negative climate shocks in the current period, but less in the lag period. In the long term, negative climate shocks bring larger adjustments to financial stability relative to positive climate shocks. Moreover, compared with the short-term effect, climate change is more destructive to financial stability in the long run. Originality/value The paper provides a quantitative reference for assessing the nexus between climate change and financial stability from a nonlinear and asymmetric perspective, which is beneficial for understanding climate-related financial risks.

2020 ◽  
Vol 8 ◽  
Author(s):  
Paul Frogner-Kockum ◽  
Gunnel Göransson ◽  
Marie Haeger-Eugensson

In order to study the impact of climate change on metal contaminant transport in urban waters and its relevance for water quality, we have analyzed variations in metal- and suspended sediment concentrations (SSC) in three urban rivers and one small creek in the Gothenburg region during various hydrological events such as spring flood, dry period, and wet period. To interpret river loads of metals and SSC we have furthermore followed meteorological trends since 1961 and additionally calculated future trends for the Gothenburg region, located on the west coast of Sweden. During periods of a short-term increase in precipitation we found an increased particle bound metal transport in urban watercourses of the Göta Älv River. In addition, a correlation between studied parameters indicates that surface runoff from brownfields most likely is the main source to the increased transport of pollutants in river systems rather than re-suspension of polluted river sediment.


Author(s):  
Kenneth Ofori-Boateng ◽  
Baba Insah

Purpose – The study aimed at examining the current and future impact of climate change on cocoa production in West Africa. Design/methodology/approach – A translog production function based on crop yield response framework was used. A panel model was estimated using data drawn from cocoa-producing countries in West Africa. An in-sample simulation was used to determine the predictive power of the model. In addition, an out-sample simulation revealed the effect of future trends of temperature and precipitation on cocoa output. Findings – Temperature and precipitation play a considerable role in cocoa production in West Africa. It was established that extreme temperature adversely affected cocoa output in the sub-region. Furthermore, increasing temperature and declining precipitation trends will reduce cocoa output in the future. Practical implications – An important implication of this study is the recognition that lagging effects are the determinants of cocoa output and not coincident effects. This finds support from the agronomic point of view considering the gestation period of the cocoa crop. Originality/value – Although several studies have been carried out in this area, this study modeled and estimated the interacting effects of factors that influence cocoa production. This is closer to reality, as climatic factors and agricultural inputs combine to yield output.


Author(s):  
Mohamed Alboghdady ◽  
Salah E. El-Hendawy

Purpose The purpose of this study is to analyze the impact of climate change and variability on agricultural production in Middle East and North Africa region (MENA) where the deleterious impacts of climate change are generally projected to be greatest. Design/methodology/approach The study used a production function model using Fixed Effect Regression (FER) analysis and then using marginal impact analysis to assess the impact of climate change and variability on agricultural production. Therefore, the study utilized panel data for the period 1961-2009 pooled from 20 countries in MENA region. Findings Results showed that 1 per cent increase in temperature during winter resulted in 1.12 per cent decrease in agricultural production. It was also observed that 1 per cent increase in temperature variability during winter and spring resulted in 0.09 and 0.14 per cent decrease in agricultural production, respectively. Results also indicated that increasing precipitation during winter and fall season and precipitation variability during winter and summer seasons had negative impact. The estimated parameters of square temperature and precipitation indicated that climate change has significant nonlinear impacts on agricultural production in MENA region. Originality/value Despite there are many studies on the impact of climate change on agricultural production, there is a lack of publications to address the economic impact of both climate change and variability on agricultural production in MENA region. Thus, these results are more comprehensive and more informative to policymakers than the results from field trials.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mingze Wu ◽  
Yueji Zhu ◽  
Qi Yang

Purpose Farmers' adaptation strategies in agricultural production are required to minimise the negative impact of climate change on a nation's food production in developing countries. Based on the panel data of the provincial level in China from 2000 to 2017, this study aims to analyse the changing climate over recent years and farmers' adaptation strategy in terms of cropping in agricultural production. Design/methodology/approach This study uses Simpson's diversity index (SDI) to measure the degree of crop diversity planted by farmers and evaluate the influence of climate change on farmers' cropping strategy using the fixed-effect model. Further, the authors estimate the impact of farmers' cropping strategy on their economic performances in two aspects including yields and technical efficiency of crops. Findings The empirical results show that the overall climate appears a warming trend. Different from farmers in some other countries, Chinese farmers tend to adopt a more specialised cropping strategy which can significantly improve the technical efficiency and yields of crops in agriculture. In addition, as a moderating role, the specialised cropping can help farmers to alleviate the negative impact of climate change on technical efficiency of their crops. Originality/value First, previous studies showed that the changing climate influenced farmers' adaptation strategies, while most studies focussed on multiple adaptation strategies from the farm-level perspective rather than cropping strategy from the nation-level perspective. Second, the present study investigates how the cropping strategy affects the economic performance (in terms of the technical efficiency and crop yields) of agricultural production. Third, the stochastic frontier analysis method is used to estimate the technical efficiency. Fourth, this study explores the moderating effect between farmers' cropping strategy and technical efficiency by introducing an interaction item of SDI and accumulated temperature.


2019 ◽  
Vol 30 (4) ◽  
pp. 851-863 ◽  
Author(s):  
Tarek Bouregaa

Purpose The purpose of this paper is to show the impact of climate change on yield and water requirement of three rainfed crops in Setif region. Design/methodology/approach This study investigates likely changes in annual temperature and precipitation over Setif high plains region (North East of Algeria) among three future periods: 2025, 2050 and 2075. The projections are based on the SRES A2 and B2 scenarios. MAGICC-SCENGEN 5.3 v.2 was used as a tool for downscaling the four selected general circulation models (GCMs) output data. The expected impact of climate change on yield and water requirement of winter wheat, barley and olive was evaluated using the CROPWAT model. Findings The projection of the four GCMs showed that average temperature will increase by 0.73 to 3.42°C, and the precipitation will decrease by 1 to 52.7 percent, across the three future periods under the two SRES scenarios. Winter wheat and olive yields are expected to decrease under the three types of soils (heavy, medium and light). However, barley yield is expected to reduce under light soil only. Crop water requirements and irrigation water requirements are expected to increase under the two scenarios and across the three future periods. Originality/value This research is one of the first to study the impact of future climate change on water requirement and yield of rainfed crops over Setif region.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nkholedzeni Sidney Netshakhuma

Purpose The purpose of this paper is to investigate the impact of climate change on South Africa’s Mpumalanga Provincial Archives (MPA) and related records management activities. Design/methodology/approach A qualitative research approach/method was used to collect data from the source, including purposive sampling and expert knowledge solicited through semi-structured interviews. A review was undertaken to source climate data and related archival sector literature. Findings Recent extreme weather events in Mpumalanga seem to bear out climate change projections. The current absence of relevant strategies and plans implies that the MPA and provincial departments are not yet prepared for emergencies. The lack of a plan, an implementation strategy and related training may increase the impact of disasters on the provincial archives’ environment. Without disaster plans and robust preparedness, the question of how the MPA is going to preserve archives for future generations is raised. In addition, due to a lack of guidance for registry staff, appraisal is not allowing for identification and processing of archival materials, so combined with a lack of disaster management strategies and plans contributes to the loss of archives. Research limitations/implications This research is limited to the MPA; however, the findings may be extended to other South Africa provincial archives and parts of the world experiencing similar issues. Practical implications When archivists accept holdings into their repositories, they take the responsibility for their archival custody. But, these efforts may come to nothing if the archives are lost. Disaster management is the key to the protection of the archives. This study evaluated the present and future consequences of climate change impacts by assessing the risk to Mpumalanga archives by climate change-related floods. Social implications There is a need to conduct similar research on a larger scale so as to explore the impact of climate change in other provincial archives to provide a wider context of the problem within South Africa. Originality/value This paper contributes to the literature on the impact of climate change on archives. The results achieved should be seen as a first step towards identification of the issue.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Amanda Oliver

Purpose This study aims to identify Canadian archives that are at risk for climate change threats, to present a snapshot of current practices around disaster planning, sustainability and climate adaptation and to provide recommended next steps for records managers and archivists adapting to climate change. Design/methodology/approach These objectives were achieved by analyzing the geographic locations of Canadian archives in relation to projected climate data and by analyzing the results of a survey distributed to staff at Canadian archival repositories. Findings This study found that all Canadian archives will be impacted by projected changes in both annual mean temperatures and precipitation to the year 2080. Themes that emerged surrounding climate adaptation strategies include the investment in the design and efficiency of spaces housing records and the importance of resilient buildings, the need for increased training on climate change, engaging senior leadership and administrators on climate change and developing regional strategies. Preparing for and mitigating the impact of climate change on the facilities and holdings needs to become a priority. Originality/value This research underscores the importance of developing climate adaptation strategies, considering the sustainability of records management and archival professional practice, increasing the resilience of the facilities and records and strengthening the disaster planning and recovery methods.


Author(s):  
Paul Chinowsky ◽  
Amy Schweikert ◽  
Gordon Hughes ◽  
Carolyn S. Hayles ◽  
Niko Strzepek ◽  
...  

Purpose – The purpose of this study is to examine the potential impact of climate change on the built environment in four Northern Asian countries. The impact on roads and buildings infrastructure in China, Japan, South Korea and Mongolia were considered during the decades 2030, 2050 and 2090. Design/methodology/approach – The study is based on a stressor-response approach, where using the analysis of 17 Intergovernmental Panel on Climate Change (IPCC) approved Global Circulation Model (GCM) scenarios, projections for impacts from flooding events, precipitation amounts and temperature were determined. The cost of the impacts, based on both maintenance and new construction considerations, were then determined. “Adapt” and “No Adapt” scenarios were incorporated to predict potential costs in each era. Findings – Mongolia is vulnerable under the majority of scenarios and faces the greatest opportunity cost in terms of potential loss to enhancing the road stock. China is also vulnerable, but the extent of this vulnerability varies widely based on the climate scenarios. Japan is primarily vulnerable to road stock impacts, although some scenarios indicate buildings vulnerability. South Korea appears to have the least vulnerability but could still face $1 billion annual costs from climate change impacts. Practical implications – Results indicate the need for proactive policy planning to avoid costly impacts later in the century. Originality/value – The study illustrates the diverse affects that may occur under climate change scenarios and the potential benefit gained from understanding and planning for the projected climate impacts on the built environment.


Author(s):  
Shéïtan Sossou ◽  
Charlemagne Babatounde Igue ◽  
Moussa Diallo

Climate change is one of the biggest challenges of the 21st century. It affects all countries in the world, especially Sahelian countries in Africa. This paper aimed at evaluating the impact of climate change on cereal yield in Burkina Faso. The ordinary least squares (OLS) was applied to time-series data from 1991 to 2016 collected on the World Bank website. The results have shown that temperature adversely affects yield and cereal production, while precipitation has positive effect. An increase in rainfall of 1 millimetre would increase cereal production by 385 tons in the long term and 252 tons in the short term. In the same, an increase in rainfall of 1 millimetre would increase agricultural yield by 9 kg per hectare in the long term. However, in the short term, an increase in temperatures of 1ºC would result in a decrease in cereal production and agricultural yield of 134748 tons and 72 kg per hectare, respectively. However, in the long term, a rise in temperatures of 1ºC would result in a decrease in cereal production and cereal yield of 154 634 tons and 1074 kg per hectare, respectively. Besides, the results indicate that the emission of carbon dioxide (CO2) has no significant effect on yield and cereal production. Implementing effective adaptation strategies, such as access to improved seed, introduce smart agriculture in the system of cereal in Burkina Faso and increasing irrigation infrastructure could reduce the cereal production's vulnerability to climate shocks.


Author(s):  
M.G. Debesai ◽  

The impact of climate change on the livelihood of farming households is a great concern particularly in developing countries. Based on a household survey conducted in 2016, in Eritrea, this paper attempts to investigate the adaptation conditions to climate change impacts on smallholder farming household. Several socioeconomic, biophysical and environmental factors affecting their farming system were listed by the respondents, including drought, soil degradation, pests and diseases, poor farm management, poor soil fertility, poor agricultural tools, and poor seed quality. Farming households employed short term coping mechanisms and long term adaption strategies to overcome the problems resulted from climate variability. The households cope up with short term climate variability at the expense of deteriorating their resources or losing their assets temporarily or permanently while they practice a long term adaptation strategy which is more or less in favour of sustaining the resource and preserving the environment. It is, therefore, recommended that policymakers need to encourage sustainable development and work to reduce the negative impact of climate change on farming households by emphasising on both short tern coping mechanisms and long term adaptation strategies.


Sign in / Sign up

Export Citation Format

Share Document