A study on ultrasonic welding of nonwovens used for surgical gowns

2017 ◽  
Vol 29 (4) ◽  
pp. 539-552
Author(s):  
Selin Hanife Eryuruk ◽  
Burçak Karagüzel Kayaoglu ◽  
Fatma Kalaoglu

Purpose Surgical gowns should be designed and produced using special techniques to provide barrier properties against potential risks during surgery and healthcare procedures. Ultrasonic welding is one of these methods used to produce surgical gowns with determined barrier properties. The purpose of this paper is to analyse bond strength and permeability properties of ultrasonically welded nonwoven fabrics and compare them with traditional sewing techniques. Design/methodology/approach In this study, ultrasonic welding of nonwovens was performed to demonstrate its use as an assembly method. Performance requirements in the design of surgical gowns were determined. Fabric strengths and bond strengths of ultrasonic-welded and traditionally sewn fabrics were analysed. The performance properties, i.e., bond strength, air and water resistance of the fabrics and the joints obtained by ultrasonic and classical sewing methods were studied. Findings As a result, it was found that ultrasonic welding technique is a suitable method for joining layers in surgical gown production bringing the advantages of high water resistance together with acceptable bond strength. Originality/value The current study focuses on the use of ultrasonic welding of nonwovens used for disposable protective surgical gowns. Ultrasound welding technique was presented as an alternative to classic assembly methods and ultrasonic welding technology was applied to different fabric combinations simulating different layers in different joining sections of a surgical gown.

2016 ◽  
Vol 46 (5) ◽  
pp. 1193-1211 ◽  
Author(s):  
Simona Jevšnik ◽  
Selin Hanife Eryürük ◽  
Fatma Kalaoğlu ◽  
Burçak Karagüzel Kayaoğlu ◽  
Petra Komarkova ◽  
...  

This study examined the effects of ultrasonic welding parameters on bond strength, seam thickness and seam stiffness, as well as water permeability. For study purpose, two types of four-layered fabrics with same compositions and different areal densities suitable for inner part of sport shoes were used. Two different types of seams, lapped and superimposed, were applied for ultrasonic welding and also compared by traditional seam applied by shoe manufacturer. The morphology of different type of seams was also analyzed to observe the influence of welding parameters on the layers during the ultrasonic welding process. Bonding strength was found to depend on the seam type and composition of the joined fabric layers. It was confirmed by the shoe manufacturer that all the produced welded seams provided the requested minimum bond strength to be suitable for the use of the shoes. The traditional seams applied by the shoe manufacturer were thicker but had lower stiffness in comparison to all welded seams. It was also found out that ultrasonic welding damaged the membrane, which was confirmed by no water resistance of welded seams. Statistical analysis showed that ultrasonic welding parameters, such as welding frequency and velocity, influence the bond strength, thickness, and bending stiffness of welded seams, but the obtained results were statistically insignificant.


2021 ◽  
Vol 2 (1) ◽  
pp. 110-120
Author(s):  
Maisa Abdelmoula ◽  
Hajer Ben Hlima ◽  
Frédéric Michalet ◽  
Gérard Bourduche ◽  
Jean-Yves Chavant ◽  
...  

Commercial adhesives present a high bond strength and water resistance, but they are considered non-healthier products. Chitosan can be considered as an interesting biosourced and biodegradable alternative, despite its low water resistance. Here, its wood bonding implementation and its tensile shear strength in dry and wet conditions were investigated depending on its structural characteristics. Firstly, the spread rate, open assembly time, drying pressure, drying temperature, and drying time have been determined for two chitosans of European pine double lap specimens. An adhesive solution spread rate of 1000 g·m−2, an open assembly time of 10 min, and a pressure temperature of 55 °C for 105 min led to a bond strength of 2.82 MPa. Secondly, a comparison between a high molecular weight/low deacetylation degree chitosan and a lower molecular weight/higher deacetylation degree chitosan was conducted. Tests were conducted with beech simple lap specimens in accordance with the implementation conditions and the conditioning treatments in wet and dry environments required for thermoplastic wood adhesive standards used in non-structural applications (EN 204 and EN 205). The results clearly revealed the dependence of adhesive properties and water resistance on the structural features of chitosans (molecular weight and deacetylation degree), explaining the heterogeneity of results published notably in this field.


2021 ◽  
Vol 1047 ◽  
pp. 97-102
Author(s):  
Nattanicha Khamsao ◽  
Kornkamon Waengwan ◽  
Sunisorn Konchai ◽  
Poonnapat Patthong ◽  
Bpantamars Phadungchob ◽  
...  

Seedling bags are low cost and light weight containers used by farmers to germinate and sprout seeds into seedlings before transplanting into the ground. However, cutting and removing seedling bags before the transplantation can damage the plant roots and cause losses in their productivity. In addition, plastics used in conventional seedling bags contribute to more plastic waste during this process. This study offers a solution to these problems with alternative biodegradable materials; i.e. modified papers made from an invasive alien aquatic plant species—water hyacinth—and enhanced with Chitosan solution coating. Papers were made from water hyacinth and dipped or sprayed with Chitosan solution in acetic acid at concentrations of 1% wt., 1.5% wt., and 2% wt. The dipping method showed better water barrier properties than the spraying method in every concentration, with 2% wt. concentration having the best barrier properties. The 2% wt. concentration of Chitosan coating by dipping method changed the water contact angle of the water hyacinth paper from a hydrophilic to a hydrophobic surface. This enhancement in water resistance was confirmed by water absorption time, which reached over 1.5 hours—3 times longer than the spraying method.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1143 ◽  
Author(s):  
Li Xu ◽  
Ying Li ◽  
Shiyu Gao ◽  
Yue Niu ◽  
Huaxuan Liu ◽  
...  

Blue luminescent carbon quantum dots (CQDs) were prepared from cyanobacteria by a hydrothermal method. The PL quantum yields of the obtained CQDs was 5.30%. Cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films were prepared, which could emit bright blue under UV light. FTIR characterization showed that the composite films had hydroxyl groups on the surface and no new groups were formed after combining the three materials. The photoluminescence (PL) spectra revealed that the emission of the prepared CQDs was excitation dependent. Studies on the water resistance performance and light barrier properties of the composite films showed that they possessed higher water resistance properties and better UV/infrared light barrier properties. Therefore, we report the cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films have the potential to be applied in flexible packaging materials, anti-fake materials, UV/infrared light barrier materials and so on.


2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yaşar Erayman Yüksel ◽  
Yasemin Korkmaz

Purpose Durability of textile materials under wet conditions has become very important in recent years. The water repellency performance of fabrics should be maintained in the seam areas. The purpose of this paper is to analyze the effect of water repellent agents and sewing threads on the seam and water repellency performance properties of woven fabrics. Design/methodology/approach 100 percent polyester woven fabrics were treated with three different water repellent finishing agents (silicone, fluorocarbons with 6 and 8 carbons) and then sewn with different sewing threads (unfinished/water repellent finished polyester/cotton corespun and polyamide filament). Afterwards, mechanical properties, seam performance and water repellency properties of these materials were measured. Findings The effect of finishing which was statistically significant on seam strength only in warp direction was significant on seam elongation and efficiency in both warp and weft directions. Seam strength, seam efficiency, seam slippage and seam pucker of fabrics sewn with polyamide threads were higher than others. The fluorocarbons applied to the fabrics gave higher water repellency values than silicones. In addition, as the chain length increased in fluorocarbons, water repellency performance increased. Sewing process reduced water resistance of fabrics; however, water repellent finish applied to the threads increased water resistance of fabrics. Originality/value As a result of the literature review, it was seen that water repellency property of a wear were studied in only seamless areas of fabrics. Originality of this study is that the water repellency properties are also analyzed in the seam areas of the fabrics and evaluated together with the seam performance characteristics.


2017 ◽  
Vol 23 (2) ◽  
pp. 414-422 ◽  
Author(s):  
Timothy J. Coogan ◽  
David Owen Kazmer

Purpose The purpose of this paper is to investigate the factors governing bond strength in fused deposition modeling (FDM) compared to strength in the fiber direction. Design/methodology/approach Acrylonitrile butadiene styrene (ABS) boxes with the thickness of a single fiber were made at different platform and nozzle temperatures, print speeds, fiber widths and layer heights to produce multiple specimens for measuring the strength. Findings Specimens produced with the fibers oriented in the tensile direction had 95 per cent of the strength of the constitutive filament. Bond strengths ranged from 40 to 85 per cent of the filament strength dependent on the FDM processing conditions. Diffusion, wetting and intimate contact all separately affect bond strength. Practical implications This study provides processing recommendations for producing the strongest FDM parts. The needs for higher nozzle temperatures and more robust feed motors are described; these recommendations can be useful for companies producing FDM products as well as companies designing FDM printers. Originality/value This is the first study that discusses wetting and intimate contact separately in FDM, and the results suggest that a fundamental, non-empirical model for predicting FDM bond strength can be developed based on healing models. Additionally, the role of equilibration time at the start of extrusion as well as a motor torque limitation while trying to print at high speeds are described.


2018 ◽  
Vol 47 (4) ◽  
pp. 290-299 ◽  
Author(s):  
Sainan Zhang ◽  
Xiankai Jiang

Purpose The purpose of this paper is to synthesize and characterize a series of two-component aromatic waterborne polyurethane (2K-WPU) which is composed of non-ionic and anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion. Design/methodology/approach The polyisocyanate aqueous dispersion was synthesized through non-ionic and anionic hydrophilic modification procedures. The values of the hydrogen bonding index (HBI) and molecule structures of WPU were obtained by Fourier transform infrared (FTIR). The thermal, mechanical and water resistance properties of 2K-WPU films were investigated. Findings The appearance of non-ionic polyisocyanate aqueous dispersion and anionic polyisocyanate aqueous dispersion was colorless translucent pan blue and yellow opaque emulsions, respectively. FTIR not only showed that 2K-WPU was obtained from the polymerization of polyisocyanate component and polyhydroxy component by polymerization but also showed that the content of hydrogen bondings of anionic 2K-WPU (WPU 2) was higher than non-ionic 2K-WPU (WPU 1). The glass-transition temperature (Tg), storage modulus and water resistance of WPU 2 were higher than WPU1, whereas the thermal stability of WPU1 was better than WPU 2. Practical implications The investigation established a method to prepare a series of 2K-WPU which was composed of non-ionic or anionic polyisocyanate aqueous dispersion and polyurethane polyol aqueous dispersion. The prepared 2K-WPU film could be applied as substrate resin material in the field of waterborne coating. Originality/value The paper established a method to synthesize a series of 2K-WPU. The effect of HBI value and the molecule structure of soft segment on the thermal stability, mechanical and water resistance properties of 2K-WPU films were studied.


Sign in / Sign up

Export Citation Format

Share Document