Synthesis, structural and nanomechanical properties of cobalt based thin films

2015 ◽  
Vol 6 (2) ◽  
pp. 225-242
Author(s):  
Elias P. Koumoulos ◽  
Vasiliki P. Tsikourkitoudi ◽  
Ioannis A. Kartsonakis ◽  
Vassileios E. Markakis ◽  
Nikolaos Papadopoulos ◽  
...  

Purpose – The purpose of this paper is to produce cobalt (Co)-based thin films by metalorganic chemical vapor deposition (CVD) technique and then to evaluate structural and mechanical integrity. Design/methodology/approach – Co-based thin films were produced by metalorganic CVD technique. Boronizing, carburization and nitridation of the produced Co thin films were accomplished through a post-treatment stage of thermal diffusion into as-deposited Co thin films, in order to produce cobalt boride (Co2B), cobalt carbide and cobalt nitride thin films in the surface layer of Co. The surface topography and the crystal structure of the produced thin films were evaluated through scanning electron microscopy and X-ray diffraction, respectively. The mechanical integrity of the produced thin films was evaluated through nanoindentation technique. Findings – The obtained results indicate that Co2B thin film exhibits the highest nanomechanical properties (i.e. H and E), while Co thin film has enhanced plasticity. The cobalt oxide thin film exhibits higher resistance to wear in comparison to the cobalt thin film, a fact that is confirmed by the nanoscratch analysis showing lower coefficient of friction for the oxide. Originality/value – This work is original.

2020 ◽  
Vol 44 (11-12) ◽  
pp. 744-749
Author(s):  
Siamak Ziakhodadadian ◽  
Tianhui Ren

In this work, tungsten oxide thin films are deposited on silicon substrates using the hot filament chemical vapor deposition system. The influence of substrate temperature on the structural, morphological, and elemental composition of the tungsten oxide thin films is investigated using X-ray diffraction, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy techniques. Also, the mechanical and tribological properties of these thin films are considered using nanoindentation and scratch tests. Based on X-ray diffraction results, it can be concluded that tungsten oxide thin films are synthesized with a cubic WO3 structure. From field-emission scanning electron microscopy images, it can be seen that tungsten oxide thin films are made of crystal clusters which have grown vertically on the substrate surface. In addition, the results exhibit two asymmetric W4d5/2 and W4d7/2 peaks which can be assigned to W5+ and W4+ species, respectively. The mechanical results show that the hardness and the elastic modulus increase on raising the substrate temperature up to 600 °C. From the tribological performances, the friction coefficient of the tungsten oxide thin film decreases on increasing the substrate temperature.


1991 ◽  
Vol 230 ◽  
Author(s):  
Z. C. Kang ◽  
A. Gupta ◽  
M. J Mckelvy ◽  
L. Eyring ◽  
S. K. Dey

AbstractThe nanostructure evolution of PZT, PT and T thin films has been studied by high-resolution electron microscopy (HREM) supported by other techniques such as thermal analysis, thermal mass spectrometric analysis and X-ray diffraction analysis. The evolution follows a common progression from amorphous film, to the development of condensed regions that develop crystalline order, to the final polycrystalline oxide thin film. If the precursor gel contains lead, the film develops fluctuating surface “blisters” that evolve to an oxide final product as well. Minor structural and compositional differences exist across the final oxide thin film.


2018 ◽  
Vol 36 (2) ◽  
pp. 304-309 ◽  
Author(s):  
Akhalakur Rahman Ansari ◽  
Shahir Hussain ◽  
Mohd. Imran ◽  
Attieh A. Al-Ghamdi ◽  
Mohammed Rehaan Chandan

Abstract In this article, ZnO thin-film deposition on a glass substrate was done using microwave induced oxygen plasma based CVD system. The prepared thin-films were tested in terms of crystallinity and optical properties by varying the microwave power. The effect of power variation on the morphology and size of final products was carefully investigated. The crystal structure, chemical composition and morphology of the final products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis spectroscopy, Raman spectroscopy and photoluminescence (PL). This technique confirmed the presence of hexagonal ZnO nanocrystals in all the thin-films. The minimum crystallite grain size as obtained from the XRD measurements was ~9.7 nm and the average diameter was ~18 nm.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ahmad Al-Sarraj ◽  
Khaled M. Saoud ◽  
Abdelaziz Elmel ◽  
Said Mansour ◽  
Yousef Haik

Abstract In this paper, we report oxidation time effect on highly porous silver oxide nanowires thin films fabricated using ultrasonic spray pyrolysis and oxygen plasma etching method. The NW’s morphological, electrical, and optical properties were investigated under different plasma etching periods and the number of deposition cycles. The increase of plasma etching and oxidation time increases the surface roughness of the Ag NWs until it fused to form a porous thin film of silver oxide. AgNWs based thin films were characterized using X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoemission spectroscopy, and UV–Vis spectroscopy techniques. The obtained results indicate the formation of mixed mesoporous Ag2O and AgO NW thin films. The Ag2O phase of silver oxide appears after 300 s of oxidation under the same conditions, while the optical transparency of the thin film decreases as plasma etching time increases. The sheet resistance of the final film is influenced by the oxidation time and the plasma application periodicity. Graphic abstract


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


Sign in / Sign up

Export Citation Format

Share Document