Friction and wear properties of friction materials containing nano/micro-sized SiO2 particles

2016 ◽  
Vol 68 (2) ◽  
pp. 259-266 ◽  
Author(s):  
Kezban Banu Sugozu ◽  
Behcet Daghan ◽  
Ahmet Akdemir ◽  
Necati Ataberk

Purpose – Among the components used for a car brake lining, the chemical and structural properties of the abrasives, jointly with the morphology and size of the particles influence the friction parameters and stability of the composite. This paper aims to investigate the effect of nano SiO2 particles in brake pads on friction and wear properties. Design/methodology/approach – In this paper, the effects of SiO2 (Silica) particles of varying size on the friction-wear properties of polymeric friction composites are investigated. Four friction composites were prepared containing (5, 10 Wt.%) micro silica (MS) particles and (5, 10 Wt.%) nano silica (NS) particles. The samples were produced by a conventional procedure for a dry formulation following dry-mixing, pre-forming and hot pressing. Friction and wear characteristics of the specimens against to a disk made of cast iron were studied. Friction coefficient, specific wear rate and hardness of specimens were obtained. Detailed examinations on the worn surface were analyzed using a scanning electron microscope. Findings – The results of test showed that the inclusion of nano silicon carbide (SiC) powder improved the wear performance significantly. Friction coefficient (μ) of NS samples was higher than the MS samples. Micro-SiC showed poor performance and μ. High wear performance was exhibited in materials containing 5 Wt.% NS and 10 Wt.% NS. Originality/value – This paper emphasizes the importance of nano-composites in the automotive industry and helps to industrial firms and academicians working on wear of materials.

2016 ◽  
Vol 68 (1) ◽  
pp. 92-98 ◽  
Author(s):  
ilker Sugozu ◽  
ibrahim mutlu ◽  
Kezban Banu Sugozu

Purpose – The purpose of this paper is to investigate use of colemanite (C) upon friction and wear performance of automotive brake lining. Brake lining production with the boron product colemanite addition and braking characterization investigated for development of non-asbestos organic (NAO) brake lining because of negative effects on human health and environmental hazard of asbestos containing linings. During the braking, brake lining is warmed up extremely due to friction, and the high temperature causes to decreasing of breaking performance. Colemanite has high melting temperature, and this makes this material valuable for brake lining. Design/methodology/approach – This study investigated the effect of colemanite (C) upon friction and wear performance of automotive brake lining. Based on a simple experimental formulation, different amounts of boron product colemanite were used and then evaluated using a friction assessment and screening test. In these specimens, half of the samples (shown with H indices) were heat treated in 4 h at 180°C temperature. Friction coefficient, wear rate and scanning electron microscope for friction surfaces were used to assess the performance of these samples. Findings – The results of test showed that colemanite can substantially improve properties of friction materials. The friction coefficient of friction materials modified with colemanite varies steadily with the change of temperature, and the wearing rate of friction materials is relatively low by using colemanite. Heat treatment-applied samples (CH) have provided a higher and stable friction coefficient. These results indicate that colemanite has ideal application effect in various friction materials. Originality/value – This paper fulfils an identified information and offers practical help to the industrial firms working with brake lining and also to the academicians working on wear of materials. Parallel results have been presented between previously reported and present study, in view of brake characteristics and wear resistance. Use of the lower cost and productive organic sources of material are the main improvement of the present study.


2017 ◽  
Vol 69 (5) ◽  
pp. 775-781 ◽  
Author(s):  
Wang Chengmin ◽  
Yang Xuefeng ◽  
Cai Xiguang ◽  
Ma Tao ◽  
Li Yunxi ◽  
...  

Purpose This paper aims to thrash out friction and wear properties of automobile brake lining reinforced by lignin fiber and glass fiber in braking process. Design/methodology/approach ABAQUS finite element software was used to analyze thermo-mechanical coupled field of friction materials. XD-MSM constant speed friction testing machine was used to test friction and wear properties of friction material. Worn surface morphology and mechanism of friction materials were observed by using scanning electron microscope. Findings The results show that when the temperature was below 350°C, worn mechanism of MFBL was mainly fatigue wear and abrasive wear, and worn mechanism of GFBL was mainly fatigue wear because MFBL contained lignin fiber. Therefore, it exhibits better mechanical properties and friction and wear properties than those of GFBL. Originality/value Lignin fiber can improve mechanical properties and friction and wear properties of the automobile brake lining.


2018 ◽  
Vol 70 (9) ◽  
pp. 1706-1713 ◽  
Author(s):  
Guotao Zhang ◽  
Yanguo Yin ◽  
Ting Xie ◽  
Dan Li ◽  
Ming Xu ◽  
...  

Purpose This paper aims to obtain high mechanical and good tribological properties of epoxy resin-based coatings under dry friction conditions. Design/methodology/approach Bonded solid lubricant coatings containing Kevlar fibres were prepared by a spraying method. The friction and wear properties of the coatings were experimentally investigated with a face-to-face tribometre under dry friction conditions. Scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D laser scanning technologies were used to characterise the tribological properties. The action mechanism of the Kevlar fibres on a solid lubricant transfer film was also analysed. Findings Adding Kevlar fibres can significantly improve the wear resistance of the coatings. When the Kevlar fibre content increases, the tribological properties of the coatings improve and then worsen. Superior properties are obtained with 0.03 g of Kevlar fibres. Appropriately increasing the load or speed is beneficial to the removal of the outer epoxy resin and the formation of a lubricant film. During friction, the solid lubricants wrapped in the epoxy resin accumulate on the surface to form a transfer film that shows a good self-lubricating performance. In the later friction stage, fatigue cracks occur on the solid lubricant film but cannot connect to one another because of the high wear resistance and the entanglement of the rod-like Kevlar fibres. Thus, no large-area film falls from the matrix, thereby ensuring the long-term functioning of solid lubricant coatings. Originality/value Epoxy resin-based solid lubricant coatings modified by Kevlar fibres were prepared, and their friction and wear properties were investigated. Their tribological mechanisms were also proposed. This work provided a basis for the analysis of the tribological properties and design of bonded solid lubricant coatings containing Kevlar fibres.


2017 ◽  
Vol 733 ◽  
pp. 60-64
Author(s):  
Munir Tasdemir ◽  
Ozkan Gulsoy

In the present work, the friction and wear properties of Polypropylene (PP) based composites filled with Hydroxyapatite (HA) particles were studied. Fillers contents in the PP were 10, 20, and 30 wt%. The effects of hydroxyapatite ratio on the water absorption, friction and wear properties of the polymer composites is presented. The result showed that the addition of HA to the composite changed the water absorption, friction coefficient and wear rate.


2011 ◽  
Vol 311-313 ◽  
pp. 1177-1181 ◽  
Author(s):  
Xing Dong Yuan ◽  
Bin Xu ◽  
Xiao Jie Yang ◽  
Hai Long Ma

The friction and wear properties of Polytetrafluoroethylene (PTFE) coatings before and after gamma irradiation were studied under vacuum conditions. Experimental results indicated that the friction and wear properties of PTFE coatings were improved by gamma irradiation. Results showed that the wear process of PTFE coatings before and after gamma irradiation consists of three stages. The steps for the irradiated PTFE are slightly longer than that for the non-irradiated samples. The friction coefficient of irradiated PTFE coatings reduces slightly compared to that of the non-irradiated samples. The friction coefficients of the PTFE coatings before and after gamma irradiation first increase with the increase of sliding velocity and then decrease with the increase of sliding velocity, and The friction coefficient of PTFE coatings before and after gamma irradiation decreases with the increase of load. The wear of irradiated PTFE coatings is slightly lower than that of non-irradiated PTFE coatings. The wear of PTFE coatings before and after gamma irradiation first decreases with the increase of sliding speed and then increases as the sliding speed increases. The wear of PTFE coatings first decreases with the increase of load and then increases with the increase of load. Scanning electron microscope (SEM) was utilized to investigate the worn surfaces.


2011 ◽  
Vol 175 ◽  
pp. 136-139 ◽  
Author(s):  
Bing Suo Pan ◽  
Xiao Hong Fang ◽  
Ming Yuan Niu

To reduce the friction coefficient between impregnated diamond bit and rock, experiments on addition of graphite to the matrix material of bit cutters were conducted. The cutters were made up of diamond contained working layers and binding layers. The friction and wear properties of cutters and binding layers were investigated using a pin-on-disc friction & wear tester with granite as tribopair. The results showed that with addition of graphite, the hardness and friction coefficient of binding layer decreased, but its wear resistance increased; compared to cutters without graphite, those cutters containing graphite had lower wear loss and friction coefficient and their sliding wear process was much steadier, but diamond protrusion was still normal.


2013 ◽  
Vol 764 ◽  
pp. 55-59
Author(s):  
Zhan Bin Guo ◽  
Song Lin Gao

The friction and wear properties of several common metal materials (45#, 25CrMn, and 40CrNiMo) friction pair under oil lubrication was investigated on M-200 Type wear tester, and studied the friction under the condition of differ sliding speed and pressure. The results show that: the 25CrMn/45# steel pair has better tribological and wear performance; the load is the main factor which influences the friction of the material at the low sliding speed; the main wear form is adhesive wear, but the wear mechanism is gradually became from adhesive wear to abrasive wear and flaking wear with the contact pressure and sliding speed increased.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Chenglong Lian ◽  
Kwang-Hee Lee ◽  
Chul-Hee Lee

The friction and wear properties of four different types of magneto-rheological (MR) elastomer were investigated. The MR elastomers have different matrix materials and structures. Most MR elastomers have a silicone matrix, since it has a more significant MR effect under a magnetic field compared to other materials. The mechanical properties of silicone, however, are poor compared to other materials, so it is difficult to use them in engineering applications. Therefore, a new polyurethane matrix material was used to enhance the friction and wear properties of MR elastomer. Additionally, two different matrix materials (silicone and polyurethane) were synthesized, and MR elastomers were structurally combined to improve the friction and wear performance. The friction characteristics of each MR elastomer were evaluated under reciprocating operating conditions. Wear depth was also measured to estimate the wear resistance. The test results show that the friction and wear performance of the modified MR elastomers are enhanced compared with the silicone-based MR elastomer.


2018 ◽  
Vol 913 ◽  
pp. 205-211
Author(s):  
Dong Mei Liu ◽  
Qiang Song Wang ◽  
Wei Yuan ◽  
Xu Jun Mi

A comparative study on the friction and wear properties of three kinds of copper alloys, including Cu-Ni based, Cu-Al and Cu-Be alloys was carried out in this study. The friction pair was stainless steel, and both dry and MoS2 lubrication friction experiments were investigated. During the experiments, different loads were chosen for different alloys. It was found that under dry friction condition, the friction coefficients of both Cu-Ni based and Cu-Al alloys did not change as the loads changes, whereas the friction coefficient of Cu-Be alloy increased as the loads increases. Under lubrication friction condition, the friction coefficients of all three alloys did not change as the load changes. The results show that the dry friction coefficient of Cu-Ni based alloy was the largest (0.74), the Cu-Al alloy next (0.60), and the Cu-Be alloy had the smallest dry friction coefficient (0.54). The lubrication friction coefficient of Cu-Ni based and Cu-Be was equal and relatively smaller (0.12), whereas the Cu-Al alloy had a relative larger lubrication friction coefficient (0.27). The microstructure observations were consistent with the friction and wear performance, and the SEM results show that different wear mechanisms were dominated for different alloys.


2012 ◽  
Vol 538-541 ◽  
pp. 1920-1923
Author(s):  
Yu Lin Qiao ◽  
Shan Lin Yang ◽  
Yan Zang ◽  
Xin Yu Dong ◽  
Qing Sheng Cui

The friction and wear properties of GCr15/45# steel frictional pairs lubricated by n- Al2O3 additives under ultrasonic vibration or not were studied. The scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS) and energy dispersive spectrometer (EDS) were carried out to analyse the wear scar surface. The effect mechanism of ultrasonic vibration on friction pairs was discussed. The results indicated that ultrasonic vibration could decrease the friction and wear of GCr15/45# friction pairs, when the content of n-Al2O3 was 0.5wt%, the effect of ultrasonic vibration on friction pairs was most obvious. The friction coefficient, wear volume and wear scar depth under ultrasonic vibration decreased 10%, 34% and 13%, respectively. The friction reduction and anti-wear mechanism of n-Al2O3 was single “micro ball bearing” without ultrasonic vibration, and it changed to “micro ball bearing” and adsorption penetration film with ultrasonic vibration, so the friction coefficient and wear volume was reduced.


Sign in / Sign up

Export Citation Format

Share Document