Dry sliding wear behavior of Inconel 718 additively manufactured by DMLS technique

2020 ◽  
Vol 72 (4) ◽  
pp. 491-496
Author(s):  
Anandakrishnan V. ◽  
Sathish S. ◽  
Duraiselvam Muthukannan ◽  
Dillibabu V. ◽  
Balamuralikrishnan N.

Purpose Aerospace and defence industries use the materials having better properties at elevated temperatures, and Inconel 718 is one of that. The complexity in realizing complex and intricate shapes necessitate the product realization through additive manufacturing. This paper aims to investigate the wear behaviour of additive manufactured material. Design/methodology/approach The wear behaviour of additively manufactured Inconel 718 samples through direct metal laser sintering process at three different build orientations was experimentally investigated using a standard pin-on-disc wear tester. Findings Among the varied wear parameters, the load was identified as the most influencing parameter on the wear rate. In addition, the post-failure analysis of the worn surface of the pins under the scanning electron microscopy revealed the presence of various wear mechanisms. Originality/value Almost, the industries are now focussed on their production through additive manufacturing owing to its advantages. The present work displays the wear behaviour of the additive manufactured Inconel 718 and its associated wear mechanisms. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0322.

2019 ◽  
Vol 72 (4) ◽  
pp. 503-508 ◽  
Author(s):  
Sathish S. ◽  
Anandakrishnan V. ◽  
Gupta Manoj

Purpose The purpose of this study is to analyse and optimize the wear parameters of magnesium metal-metal composite. Materials with lesser weight attract both the researcher and industrialists, as it exhibits the performance improvement in the automotive and aerospace industries. The enrichment of mechanical and tribological properties of the existing magnesium focussed the development of new metal–metal composite. Design/methodology/approach Metal–metal composite with magnesium matrix was synthesized through the disintegrated melt deposition technique with the addition of titanium, aluminium and boron carbide particles. The wear performance of the composite was experimented with the dry sliding wear test by considering load, sliding velocity and sliding distance. Findings The wear rate of the composite is analysed statistically, and the significance of wear parameters on the wear performance of metal–metal composite is observed. The worn pin surface and the wear debris collected during the wear experiments were exposed to the microscopy analysis to seize the dominating wear mechanisms. Originality/value The wear performance of the developed magnesium composite was analysed and discussed in detail with the support of scientific evidence, i.e. worn surface and debris analysis express the wear mechanisms. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0326/


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bilal Kurşuncu

Purpose The effect of cryogenic heat treatment on the mechanical properties of different materials has been frequently investigated by researchers in recent years. The purpose of this paper is to investigate wear behaviour of monolayer, multilayer and nanocomposite coatings after cryogenic heat treatment. It is a first in its field in terms of both the heat treatment used and the coatings examined. Design/methodology/approach The aCN/TiAlN, TiAlN and ncTiAlSiN hard coatings deposited on the AISI D2 steel substrate were subjected to cryogenic heat treatment at −145oC and −196oC for 24 h and then tempered at 200oC for 2 h. Then, the samples were subjected to wear tests of 5, 10 and 15 N three different load values. The wear mechanisms occurring on the wear surfaces were determined by scanning electron microscope supported by EDS. Findings Oxidation, fatigue and delamination wear mechanisms were realized on the surfaces of the samples subjected to dry sliding wear test. The wear resistance of S1 increased with cryogenic heat treatment. According to the wear test results of the untreated samples, it was found that the samples with lower hardness than the others had higher wear resistance. The wear resistance of S1 and S2 samples was increased by cryogenic heat treatment. The best wear resistance in all parameters was obtained by S1. Oxidation in the S1 was found to have a positive effect on wear resistance. According to EDS results after wear of S2, chromium-rich layer was found on the surface of the material. It is understood that cryogenic heat treatment causes carbide precipitation in the inner structure of the substrate material. Originality/value The effect of cryogenic heat treatment on the mechanical properties of different materials has been frequently investigated by researchers in recent years. In this study, wear behaviour of monolayer, multilayer and nanocomposite coatings after cryogenic heat treatment was investigated. It is a first in its field in terms of both the heat treatment used and the coatings examined. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0111/


2014 ◽  
Vol 66 (4) ◽  
pp. 545-554 ◽  
Author(s):  
C. Velmurugan ◽  
R. Subramanian ◽  
S.S. Ramakrishnan ◽  
S. Thirugnanam ◽  
T. Kannan ◽  
...  

Purpose – The purpose of this paper is to investigate the influence of most predominant heat-treatment parameters on the wear behavior of Al6061 hybrid composite reinforced with 10 weight per cent SiC and 2 weight per cent graphite particles. Design/methodology/approach – The aluminum hybrid composite was produced using stir casting process. Wear testing of heat-treated samples was carried out using a pin-on-disc apparatus. Experiments were conducted by applying design of experiments (DOE) technique. The experimental values were used for formulation of a mathematical model. The wear surfaces of composite specimens were analyzed using scanning electron microscope (SEM). Findings – The volume loss of heat-treated composite initially decreased with increasing aging duration. This was followed by the attainment of a minimum and then a reversal in the trend at longer aging times. SEM micrographs of the wear surfaces of the composite show that the wear mechanisms were abrasion, delamination and adhesion. Originality/value – In this paper, the hybrid composite was produced using stir casting route, and its wear properties after heat treatment were tested using pin-on-disc apparatus. It was found that heat treatment had a profound effect on the wear behaviour of the developed composite.


2018 ◽  
Vol 70 (4) ◽  
pp. 687-699 ◽  
Author(s):  
Thomas Wopelka ◽  
Ulrike Cihak-Bayr ◽  
Claudia Lenauer ◽  
Ferenc Ditrói ◽  
Sándor Takács ◽  
...  

Purpose This paper aims to investigate the wear behaviour of different materials for cylinder liners and piston rings in a linear reciprocating tribometer with special focus on the wear of the cylinder liner in the boundary lubrication regime. Design/methodology/approach Conventional nitrided steel, as well as diamond-like carbon and chromium nitride-coated piston rings, were tested against cast iron, AlSi and Fe-coated AlSi cylinder liners. The experiments were carried out with samples produced from original engine parts to have the original surface topography available. Radioactive tracer isotopes were used to measure cylinder liner wear continuously, enabling separation of running-in and steady-state wear. Findings A ranking of the material pairings with respect to wear behaviour of the cylinder liner was found. Post-test inspection of the cylinder samples by scanning electron microscopy (SEM) revealed differences in the wear mechanisms for the different material combinations. The results show that the running-in and steady-state wear of the liners can be reduced by choosing the appropriate material for the piston ring. Originality/value The use of original engine parts in a closely controlled tribometer environment under realistic loading conditions, in conjunction with continuous and highly sensitive wear measurement methods and a detailed SEM analysis of the wear mechanisms, forms an intermediate step between engine testing and laboratory environment testing.


Author(s):  
Sajeeb Rahiman ◽  
Robinson Smart

Dry sliding wear and immersion corrosion behaviors of Al 5083-based hybrid composite reinforced with multiwalled carbon nanotube (MWCNT), Molybdenum boride (MoB) and nickel (Ni) are studied with different weight percentages. The reinforcement weight percentages of MWCNT ranges from 0 to 1.5, that of MoB from 1 to 4 and for Ni from 2 to 8. Dry sliding wear behavior at room temperature is studied using Pin on Disc by varying the sliding distances from 500 to 2000m, load from 10 to 40 N and sliding velocity from 0.25 to 1.75m/s. The wear studies revealed that there is a considerable decrease in wear rate for composites than the alloy material with increase in %wt of reinforcements for all test parameters. The worn surface analysis revealed that there are two types of wear mechanisms namely abrasive and adhesive. The uniform immersion corrosion tests also showed decreasing rate with increase in reinforcements.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1735 ◽  
Author(s):  
Liang Li ◽  
Jihe Feng ◽  
Ce Liang ◽  
Jian An

Dry sliding wear behavior of Mg97Zn1Y2 alloy was investigated at test temperatures of 50–200 °C under three sliding speeds of 0.8 m/s, 3.0 m/s and 4.0 m/s. The wear mechanisms in mild and severe wear regimes were identified by examination of morphologies and compositions of worn surfaces using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS), and from which wear transition maps under different sliding speeds were constructed on rectangular coordinate systems with applied load versus test temperature axes. It is found that under each sliding speed condition, mild–severe transition load decreases almost linearly within the test temperature range of 50 °C to 200 °C. Microstructure observation and hardness measurement in subsurfaces identify that the softening effect generating form dynamic crystallization (DRX) is the dominant mechanism for the mild–severe wear transition at elevated temperatures. The mild–severe wear transition at 50–200 °C follows the contact surface DRX temperature criterion, and the transition loads can be well evaluated using the criterion.


2014 ◽  
Vol 10 (2) ◽  
pp. 276-287
Author(s):  
Rajesh Siriyala ◽  
A. Gopala Krishna ◽  
P. Rama Murthy Raju ◽  
M. Duraiselvam

Purpose – Since, wear is the one of the most commonly encountered industrial problems leading to frequent replacement of components there is a need to develop metal matrix composites (MMCs) for achieving better wear properties. The purpose of this paper is to fabricate aluminum MMCs to improve the dry sliding wear characteristics. An effective multi-response optimization approach called the principal component analysis (PCA) was used to identify the sets of optimal parameters in dry sliding wear process. Design/methodology/approach – The present work investigates the dry sliding wear behavior of graphite reinforced aluminum composites produced by the molten metal mixing method by means of a pin-on-disc type wear set up. Dry sliding wear tests were carried on graphite reinforced MMCs and its matrix alloy sliding against a steel counter face. Different contact stress, reinforcement percentage, sliding distance and sliding velocity were selected as the control variables and the response selected was wear volume loss (WVL) and coefficient of friction (COF) to evaluate the dry sliding performance. An L25 orthogonal array was employed for the experimental design. Optimization of dry sliding performance of the graphite reinforced MMCs was performed using PCA. Findings – Based on the PCA, the optimum level parameters for overall principal component (PC) of WVL and COF have been identified. Moreover, analysis of variance was performed to know the impact of individual factors on overall PC of WVL and COF. The results indicated that the reinforcement percentage was found to be most effective factor among the other control parameters on dry sliding wear followed by sliding distance, sliding velocity and contact stress. Finally the wear surface morphology of the composites has been investigated using scanning electron microscopy. Practical implications – Various manufacturing techniques are available for processing of MMCs. Each technique has its own advantages and disadvantages. In particular, some techniques are significantly expensive compared to others. Generally the manufacturer prefers the low cost technique. Therefore stir casting technique which was used in this paper for manufacturing of Aluminum MMCs is the best alternative for processing of MMCs in the present commercial sectors. Since the most important criteria of a dry sliding wear behavior is to provide lower WVL and COF, this study has intended to prove the application of PCA technique for solving multi objective optimization problem in wear applications like piston rings, piston rods, cylinder heads and brake rotors, etc. Originality/value – Application of multi-response optimization technique for evaluation of tribological characteristics for Aluminum MMCs made up of graphite particulates is a first-of-its-kind approach in literature. Hence PCA method can be successfully used for multi-response optimization of dry sliding wear process.


2009 ◽  
Vol 423 ◽  
pp. 125-130 ◽  
Author(s):  
Alvaro Mestra ◽  
Gemma Fargas ◽  
Marc Anglada ◽  
Antonio Mateo

Duplex stainless steels contain similar amounts of austenite  and ferrite α. This two-phase microstructure leads to an excellent combination of mechanical properties and corrosion resistance. However, there are few works dealing with the wear behaviour of these steels. This paper aims to determine the sliding wear mechanisms of a duplex stainless steel type 2205. In order to do it, three different sliding velocities (0.2, 0.7 and 1.2 m/s) and six sliding distances (500, 1000, 2000, 3000, 4000 and 5000 m) were selected. The results show that wear rate depends on both sliding velocity and sliding distance. The wear mechanisms detected were plowing, microcracking and microcutting (typical mechanisms of fatigue wear). These mechanisms evolve according to sliding velocity and sliding distance, highlighting a transition zone in which wear rate is reduced.


2017 ◽  
Vol 69 (2) ◽  
pp. 325-332 ◽  
Author(s):  
Shiyu Cui ◽  
Qiang Miao ◽  
Wenping Liang ◽  
Yi Xu ◽  
Baiqiang Li

Purpose The purpose of this study is to prepare WC-10Co-4Cr coatings using two processes of plasma spraying and high-velocity oxygen fuel (HVOF) spraying. The decarburization behaviors of the different processes are analyzed individually. The microstructural characteristics of the as-sprayed coatings are presented and the wear mechanisms of the different WC–10Co–4Cr coatings are discussed in detail. Design/methodology/approach The WC–10Co–4Cr coatings were formed on the surface of Q235 steel by plasma and HVOF spraying. Findings Plasma spraying causes more decarburizing decomposition of the WC phase than HVOF spraying. In the plasma spraying process, η(Cr25Co25W8C2) phase appears and the C content decreases from the top surface of the coating to the substrate. Practical implications In this study, two WC–10Co–4Cr coatings on Q235 steel prepared by plasma and HVOF spraying were compared with respect to the sliding wear behavior. Originality/value The wear mechanisms of the plasma- and HVOF-sprayed coatings were abrasive and oxidation, respectively.


Author(s):  
NAVEEN EASWARAN ◽  
Shanmugam Ramasamy ◽  
Roshan Nagarajan ◽  
Ramanan Nandagopal ◽  
Sripada Ragavendra Keshava Narasimha

Elemental powders of Atomized Iron (Fe), Carbon (C) and Molybdenum (Mo) were weighed and mixed in a pot mill to yield the composition of C45, C45-1%Mo and C45-2%Mo Steels, then compacted and sintered. The Sintered preforms had a density- 75% of the Theoretical Density. Then the Sintered preforms were subjected to densification to get two densities- 80% and 85% of the theoretical density through Forging. The sintered and densified preforms of alloy steels were subsequently machined to get the required wear test specimens.The experiments were conducted on a Pin-on-disc Tribometer, conforming to ASTM G99 standards, on a rotating EN32 disc. Using Minitab 16 software, the Dry Sliding wear experiments were planned using L27 Orthogonal Array.The % Theoretical Density of the Specimens (1-%Porosity), % Mo Addition, Load and Sliding Velocity were taken as input parameters, mass loss was the output parameter. It was observed that the increasing density of alloy steels adversely affects the wear resistance of the alloy steels and mass loss is increased. It was found that the addition of Mo significantly improves the wear resistance of the alloy steels irrespective of the densities .Empirical correlations for mass loss with respect to input parameters had been developed.


Sign in / Sign up

Export Citation Format

Share Document