Effect of wear parameters on dry abrasive wear of RZ5-TiC in situ composite

2018 ◽  
Vol 70 (2) ◽  
pp. 256-263 ◽  
Author(s):  
Deepak Mehra ◽  
Manas Mohan Mahapatra ◽  
Suraj Prakash Harsha

Purpose The purpose of this study is to increase the wear resistance of Mg alloy by adding hard ceramic particles to it. The inclusion of hard ceramic particles further strengthen the Mg alloy, resulting in higher wear resistance. Mg alloys containing Zn, rare earth and Zr exhibit high specific strength and excellent creep resistance, making them suitable for aerospace components such as aircraft gearboxes and generator housings. Design/methodology/approach In the present study, composites have been produced in situ by using RZ5 mg alloy as matrix and TiC as reinforcement by self-propagating high-temperature synthesis technique. The abrasive wear behavior of RZ5 Mg alloy matrix reinforced with TiC particulates has also been examined. The pin-on-disc apparatus has been used for the tests. The abrasive paper is used as a counter body, and the results are obtained by changing sliding distance and applied load. Findings A notable enhancement in the wear resistance and mechanical properties of tested composite has been observed as compared to the RZ5 Mg alloy as a matrix. There is a uniform increment in the change in weight loss of RZ5-TiC composite with increasing sliding distance and applied load, but it decreases with increasing TiC content. The coefficient of friction (µ) also decreases uniformly with an increase in the reinforcement of TiC, but it decreases with an increase in applied load and sliding distance. The investigation of the worn composite, which determines dominant wear mechanisms as abrasion and plowing grooves on tested samples, has been done using field emission scanning electron microscopy. Originality/value The current manuscript provides a detailed abrasive wear analysis of RZ5-TiC composite by using different wear parameters. Specifically, extensive experimental data have been provided for RZ5-TiC composite. The effects of parameters such as applied load, sliding distance and Wt.% of TiC on the weight loss and coefficient of friction of the composites have been analyzed and discussed thoroughly.

2019 ◽  
Vol 71 (9) ◽  
pp. 1029-1037
Author(s):  
Deepak Mehra ◽  
Manas Mohan Mahapatra ◽  
Suraj Prakash Harsha

Purpose The RZ5 mg alloy is used in automotive and aerospace applications including helicopter gearboxes and aircraft components. These components are prone to the wear as per the demands. The present work is the study of the significance of hard particle/ceramic, i.e. titanium carbide (TiC) in RZ5 mg alloy to protect the machine components from wear. Design/methodology/approach The abrasive wear analysis of in-situ RZ5-TiC magnesium matrix composite is considered for the study. The primary focus of the present work is to analyze the effects of varying control parameters, i.e. Wt.% of TiC, sliding distance and applied load on the responses, i.e. weight loss and coefficient of friction. Full factorial design of the experiment based on statistical analysis is used. Findings It is observed that the individually Wt.% of TiC and sliding distance show the comparatively significant effect on both responses. Similarly, the interaction between sliding distance and Wt.% of TiC indicated the considerable impact on weight loss. The regression equations are developed and validated for estimating responses. It is observed that the percentage errors are not appearing more than 10 per cent of responses. Therefore, the close agreement between measured and predicted values shows the adequacy of the model. The control factor is optimized using multi-response optimization. The variations of the order of 2.47 and 2.35 per cent in target value of the coefficient of friction and weight loss are achieved. Originality/value The current manuscript provides a detailed abrasive wear statistical analysis of RZ5-TiC composite. The influence of control parameters on the responses using the full factorial design, the main effect plots and interaction effects are presented.


2018 ◽  
Vol 70 (5) ◽  
pp. 907-914 ◽  
Author(s):  
Deepak Mehra ◽  
Manas Mohan Mahapatra ◽  
Suraj Prakash Harsha

Purpose The advancement in modern manufacturing technology generated the need to develop new materials for better wear resistance. The purpose of this paper is to use the Taguchi optimization approach to examine which wear parameter significantly affects weight loss and coefficient of friction for RZ5-TiC composite. It is a simple and efficient method to find performance of wear parameter using minimum experimental runs. Design/methodology/approach RZ5-TiC composites were prepared using RZ5 as matrix, reinforced with TiC through self-propagating high-temperature synthesis technique. In the present work, an attempt has been made to study the influence of wear parameters like applied load (AL), sliding distance (SD) and Wt.% of TiC (WTC) on responses like weight loss and coefficient of friction of RZ5/TiCp composites. The pin-on-disc apparatus used to conduct abrasive wear test. The wear process parameters are optimized for minimum wear based on L27 Taguchi orthogonal design. The Taguchi technique using design of experiments (DOE) is used to obtain the data. The ANOVA and an orthogonal array are used to examine the influence of wear parameters on responses. The purpose is to examine parametric significances which affect responses. Findings It observed that wear parameters have the significant influence on responses of RZ5/TiCp composites. The interaction of sliding distance/Wt.% of TiC is observed and found significant influence on both responses. The optimum level of the significant wear parameters is achieved based on the maximum S/N ratio for RZ5/TiCp composites. The optimal interaction for weight loss and coefficient of friction is AL1-SD1-WTC3 and AL3-SD1-WTC3, respectively. Finally, the confirmation test is conducted and the results are obtained within the confidence interval. Originality/value The current manuscript provides an optimization of wear parameters using Taguchi approach. The extensive experimental data are used for this purpose and effects of wear parameters on responses are analyzed from the presented results. The results obtained are useful in improving the wear resistance of the RZ5-TiC composite.


2016 ◽  
Vol 68 (6) ◽  
pp. 632-639 ◽  
Author(s):  
Ferit Ficici

Purpose The paper aims to describe the Taguchi design method-based abrasive wear modeling of in situ AlB2 flake reinforced Al-4Cu matrix alloy composites. Design/methodology/approach The abrasive wear behaviors of the composite samples were investigated using pin-on-disk method where the samples slid against different sizes of SiC abrasive grits under various testing conditions. The orthogonal array, signal-to-noise (S/N) ratio and analysis of variance were used to study the optimal testing parameters on composite samples. Findings The weight loss of composites decreased with increasing grit size and percentage reinforcement and increased with increasing sliding speed. The optimum test condition, at which the minimum weight loss is obtained, has been determined to be A3B3C1 levels of the control factors. Deviations between the actual and the predicted S/N ratios for abrasive weight losses are negligibly small with 99.5 per cent confidence level. Originality/value This paper fulfils an identification of Taguchi method-based abrasive wear behavior of AlB2/Al-4Cu metal matrix composites produced by squeeze casting under various testing conditions.


2011 ◽  
Vol 413 ◽  
pp. 262-269 ◽  
Author(s):  
Hossein Beygi ◽  
M. Shaterian ◽  
E. Tohidlou ◽  
M.R. Rahimipour

In order to increase wear resistance of Fe-0.7Cr-0.8Mn cold work tool steels, low weight percentage of Ti incorporated to the alloy and subsequently, because of high affinity between additive titanium and carbon content in this alloy, low weight percentage of TiC in situ formed in matrix. These composites can be used as the milling balls in mining and cement industries because of their improved wear resistance. Formation, shape, size and distribution of TiC particles within the matrix were studied by optical microscopy equipped with image analyzer, optical emission spectroscopy, scanning electron microscopy and energy dispersive spectroscopy. Also microhardness and density of the samples measured. Abrasion wear tests were carried out using a pin on disc type machine. An experimental design based on Taguchi method was applied to investigate the effect of TiC content, applied load, sliding distance and roughness of SiC abrasive paper on wear behavior of samples. The results show that by reinforcing the Fe-0.7Cr-0.8Mn steels with low weight percentage of TiC, wear resistance of these kind of milling balls significantly increases. Sliding distance has the most influence on wear rate of samples, also weight loss of samples decreases as sliding distance, applied load and roughness of grinding decreases.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


2017 ◽  
Vol 61 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Lei Wang ◽  
Feng Qiu ◽  
Delong Yang ◽  
Jingyuan Liu ◽  
Fang Chang ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Recep Demirsöz ◽  
Mehmet Erdl Korkmaz ◽  
Munish Kumar Gupta ◽  
Alberto Garcia Collado ◽  
Grzegorz M. Krolczyk

Purpose The main purpose of this work is to explore the erosion wear characteristics of additively manufactured aluminium alloy. Additive manufacturing (AM), also known as three-dimensional (3D) manufacturing, is the process of manufacturing a part designed in a computer environment using different types of materials such as plastic, ceramic, metal or composite. Similar to other materials, aluminum alloys are also exposed to various wear types during operation. Production efficiency needs to be aware of its reactions to wearing mechanisms. Design/methodology/approach In this study, quartz sands (SiO2) assisted with oxide ceramics were used in the slurry erosion test setup and its abrasiveness on the AlSi10Mg aluminum alloy material produced by the 3D printer as selective laser melting (SLM) technology was investigated. Quartz was sieved with an average particle size of 302.5 µm, and a slurry environment containing 5, 10 and 15% quartz by weight was prepared. The experiments were carried out at the velocity of 1.88 (250 rpm), 3.76 (500 rpm) and 5.64 m/s (750 rpm) and the impact angles 15, 45 and 75°. Findings With these experimental studies, it has been determined that the abrasiveness of quartz sand prepared in certain particle sizes is directly related to the particle concentration and particle speed, and that the wear increases with the increase of the concentration and rotational speed. Also, the variation of weight loss and surface roughness of the alloy was investigated after different wear conditions. Surface roughness values at 750 rpm speed, 10% concentration and 75° impingement angle are 0.32 and 0.38 µm for 0 and 90° samples, respectively, with a difference of approximately 18%. Moreover, concerning a sample produced at 0°, the weight loss at 250 rpm at 10% concentration and 45° particle impact angle is 32.8 mg, while the weight loss at 500 rpm 44.4 mg, and weight loss at 750 rpm is 104 mg. Besides, the morphological structures of eroded surfaces were examined using the scanning electron microscope to understand the wear mechanisms. Originality/value The researchers verified that this specific coating condition increases the slurry wear resistance of the mentioned steel. There are many studies about slurry wear tests; however, there is no study in the literature about the quartz sand (SiO2) assisted slurry-erosive wear of AlSi10Mg alloy produced with AM by using SLM technology. This study is needed to fill this gap in the literature and to examine the erosive wear capability of this current material in different environments. The novelty of the study is the use of SiO2 quartz sands assisted by oxide ceramics in different concentrations for the slurry erosion test setup and the investigations on erosive wear resistance of AlSi10Mg alloy manufactured by AM.


2021 ◽  
Vol 316 ◽  
pp. 893-898
Author(s):  
Natalya Gabelchenko ◽  
Artem Belov ◽  
Artem Kravchenko ◽  
Oleg Kryuchkov

We conducted comparative tests of the wear resistance of metals operating under abrasive conditions. Samples were cut from the working parts of mixer-pneumosuperchargers. The chemical composition and mechanical properties were determined. To compare samples under abrasive wear conditions, we designed and assembled a carousel installation. The principle of its operation is based on mixing the abrasive medium by the samples being studied with a given speed. Wear resistance was evaluated by weight loss by samples after several test cycles. To determine changes in the structure of the metal during abrasive wear, metallographic studies of the samples were carried out before and after the tests. It is shown that the best complex of service and mechanical properties is possessed by 110G13L steel.


Sign in / Sign up

Export Citation Format

Share Document