Mechatronic design and experimental validation of a novel robotic hand

Author(s):  
Giorgio Figliolini ◽  
Pierluigi Rea

Purpose – The subject of the paper is the mechatronic design of a novel robotic hand, cassino-underactuated-multifinger-hand (Ca.U.M.Ha.), along with its prototype and the experimental analysis of its grasping of soft and rigid objects with different shapes, sizes and materials. The paper aims to discuss these issues. Design/methodology/approach – Ca.U.M.Ha. is designed with four identical underactuated fingers and an opposing thumb, all joined to a rigid palm and actuated by means of double-acting pneumatic cylinders. In particular, each underactuated finger with three phalanxes and one actuator is able to grasp cylindrical objects with different shapes and sizes, while the common electropneumatic operation of the four underactuated fingers gives an additional auto-adaptability to grasp objects with irregular shapes. Moreover, the actuating force control is allowed by a closed-loop pressure control within the pushing chambers of the pneumatic cylinders of the four underactuated fingers, because of a pair of two-way/two-position pulse-width-modulation (PWM) modulated pneumatic digital valves, which can also be operated under ON/OFF modes. Findings – The grasping of soft and rigid objects with different shapes, sizes and materials is a very difficult task that requires a complex mechatronic design, as proposed and developed worldwide, while Ca.U.M.Ha. offers these performances through only a single ON/OFF or analogue signal. Practical implications – Ca.U.M.Ha. could find several practical applications in industrial environments since it is characterized by a robust and low-cost mechatronic design, flexibility and easy control, which are based on the use of easy-running components. Originality/value – Ca.U.M.Ha. shows a novel mechatronic design that is based on a robust mechanical design and an easy operation and control with high dexterity and reliability to perform a safe grasp of objects with different shapes, sizes and materials.

2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Haosen Yang ◽  
Guowu Wei ◽  
Lei Ren ◽  
Zhihui Qian ◽  
Kunyang Wang ◽  
...  

Abstract This paper presents the design, analysis, and development of an anthropomorphic robotic hand coined MCR-hand II. This hand takes the advantages of both the tendon-driven and linkage-driven systems, leading to a compact mechanical structure that aims to imitate the mobility of a human hand. Based on the investigation of the human hand anatomical structure and the related existing robotic hands, mechanical design of the MCR-hand II is presented. Then, using D-H convention, kinematics of this hand is formulated and illustrated with numerical simulations. Furthermore, fingertip force is deduced and analyzed, and mechatronic system integration and control strategy are addressed. Subsequently, a prototype of the proposed robotic hand is developed, integrated with low-level control system, and following which empirical study is carried out, which demonstrates that the proposed hand is capable of implementing the grasp and manipulation of most of the objects used in daily life. In addition, the three widely used tools, i.e., the Kapandji score test, Cutkosky taxonomy, and Kamakura taxonomy, are used to evaluate the performance of the hand, which evidences that the MCR-hand II possesses high dexterity and excellent grasping capability; object manipulation performance is also demonstrated. This paper hence presents the design and development of a type of novel tendon–linkage-integrated anthropomorphic robotic hand, laying broader background for the development of low-cost robotic hands for both industrial and prosthetic use.


Circuit World ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 189-195 ◽  
Author(s):  
Yan Liu ◽  
Hai Wang ◽  
Wei Zhao ◽  
Min Zhang ◽  
Hongbo Qin

Purpose Inspired by the development of eco-friendly flexible electronics, this paper aims to present a series of paper-based electronics drawn by pencils, which can be used as favorable sensing elements in daily life. Design/methodology/approach Pencil traces are deposited on the porous surface of Xerox paper by the mechanical exfoliation during writing process, which can be used as basic components to construct functional electronics for daily sensing applications. By changing pencil grade, the obtained traces can work as conductive wires, electrodes, resistors and piezoresistive gauges. Findings The experimental results confirm their practical applications in sensing several daily activities, including finger motion, touching and the temperature of water in paper cup. Moreover, the used electronics can be easily handled and recycled. Research limitations/implications The shortage in functionality, reliability and performance consistency induced by manual operation is an evident challenge, which makes the pencil-on-paper devices more suitable to work as a temporary solution to satisfying the demands from emergency circumstances. Originality/value The pencil-on-paper devices, motivated by the electroconductibility and piezoresistivity of pencil trace, can be explored as sensing prototypes in detecting daily activities. Meantime, their advances in easy accessibility, rapid fabrication, low cost and eco-fitness endow them excellent capacity of meeting the “on-site, real-time” demands.


Author(s):  
Dilshad A. Sulaiman ◽  
Akash B. Pandey

This paper provides the design of a simple robotic arm for pick and place operations as well as other material handling operations. The movements of the arm are anthropometric i.e. resembling the human arm with respect to degrees of freedom so as to provide a human touch in industrial and space operations. This system operates using controlled motion of DC geared motors along with a microcontroller based system (8051 or PIC based). Use of PWM (Pulse Width Modulation) can be used to control the RPM of DC geared motors. This system has the advantage of being simple and low cost with a varied flexibility of operation. A collective array of sensors viz. voice sensor, infrared light sensors, proximity sensors etc. can be incorporated to form a feedback induced closed loop system. Whereas for tasks of picking and placing at a fixed location from another location the system can be operational at open-loop. The material for the robotic arm can be polypropylene or acrylic or aluminium to reduce weight without compromising on the strength and lifting capacity of the robotic arm, such that the torque of the DC geared motors (actuators) at each joint are sufficient to lift the arm along with the weight at the end effector. Clutch and gear shifting mechanism can be used to increase the degrees of freedom per actuator. The driving circuit mainly consists of the microcontroller and H-bridge drivers using an 8-bit port to control 4 DC geared motors per port simultaneously or one at a time using delay commands. DC geared motors are quite cheaper than stepper motors and RC Servos thus reducing the total cost of the system drastically. Plus being light weight, DC geared motors reduce the total weight of the system. This paper will also throw light on the programming aspects for the microcontroller (8051 or PIC based) along with the compatible flash programmers and HEX code generators. This project will further explain on the approach followed in the mechanical design of the robotic arm (motion, work volume etc.) as well as the possible future applications of the robotic arm. Also the design of the robotic arm on CAD tools like Solidworks will be discussed in brief along with the modeling and simulation of the various links of the arm as well as the whole assembly of the system. With increasing popularity of Automation, robotic arms are the present and future of all industrial operations. Finally the paper concludes on the further improvements in design and technology.


Robotica ◽  
2005 ◽  
Vol 24 (3) ◽  
pp. 329-331 ◽  
Author(s):  
Giorgio Figliolini ◽  
Pierluigi Rea

The overall design of Ca.U.M.Ha. (Cassino-Underactuated-Multifinger-Hand) for harvesting horticulture products is presented. Ca.U.M.Ha. shows an anthropomorphic design incorporating four underactuated finger mechanisms and a simplified contrasting thumb, which are all joined to a rigid palm. The pneumatic cylinders of the articulated fingers are operated in parallel in order to give an additional auto-adaptability on the object to grasp. An application of Ca.U.M.Ha. for grasping different shapes of apples is presented.


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Marc G. Chevrette ◽  
Jennifer R. Bratburd ◽  
Cameron R. Currie ◽  
Reed M. Stubbendieck

ABSTRACT Low-cost, high-throughput nucleic acid sequencing ushered the field of microbial ecology into a new era in which the microbial composition of nearly every conceivable environment on the planet is under examination. However, static “screenshots” derived from sequence-only approaches belie the underlying complexity of the microbe-microbe and microbe-host interactions occurring within these systems. Reductionist experimental models are essential to identify the microbes involved in interactions and to characterize the molecular mechanisms that manifest as complex host and environmental phenomena. Herein, we focus on three models (Bacillus-Streptomyces, Aliivibrio fischeri-Hawaiian bobtail squid, and gnotobiotic mice) at various levels of taxonomic complexity and experimental control used to gain molecular insight into microbe-mediated interactions. We argue that when studying microbial communities, it is crucial to consider the scope of questions that experimental systems are suited to address, especially for researchers beginning new projects. Therefore, we highlight practical applications, limitations, and tradeoffs inherent to each model.


Author(s):  
Dilshad A. Sulaiman ◽  
Akash B. Pandey

This paper provides the design of a simple robotic arm for pick and place operations as well as other material handling operations. The movements of the arm are anthropometric i.e. resembling the human arm with respect to degrees of freedom so as to provide a human touch in industrial and space operations. This system operates using controlled motion of DC geared motors along with a microcontroller based system (8051 or PIC based). Use of PWM (Pulse Width Modulation) can be used to control the RPM of DC geared motors. This system has the advantage of being simple and low cost with a varied flexibility of operation. A collective array of sensors viz. voice sensor, infrared light sensors, proximity sensors etc. can be incorporated to form a feedback induced closed loop system. Whereas for tasks of picking and placing at a fixed location from another location the system can be operational at open-loop. The material for the robotic arm can be polypropylene or acrylic or aluminium to reduce weight without compromising on the strength and lifting capacity of the robotic arm, such that the torque of the DC geared motors (actuators) at each joint are sufficient to lift the arm along with the weight at the end effector. Clutch and gear shifting mechanism can be used to increase the degrees of freedom per actuator. The driving circuit mainly consists of the microcontroller and H-bridge drivers using an 8-bit port to control 4 DC geared motors per port simultaneously or one at a time using delay commands. DC geared motors are quite cheaper than stepper motors and RC Servos thus reducing the total cost of the system drastically. Plus being light weight, DC geared motors reduce the total weight of the system. This paper will also throw light on the programming aspects for the microcontroller (8051 or PIC based) along with the compatible flash programmers and HEX code generators. This project will further explain on the approach followed in the mechanical design of the robotic arm (motion, work volume etc.) as well as the possible future applications of the robotic arm. Also the design of the robotic arm on CAD tools like Solidworks will be discussed in brief along with the modeling and simulation of the various links of the arm as well as the whole assembly of the system. With increasing popularity of Automation, robotic arms are the present and future of all industrial operations. Finally the paper concludes on the further improvements in design and technology.


Author(s):  
Luis Arturo Gómez Malagón ◽  
João Luiz Vilar Dias
Keyword(s):  

2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Hanxiang Chen ◽  
Jianjian Yi ◽  
Zhao Mo ◽  
Yanhua Song ◽  
Wenshu Yang ◽  
...  

Abstract Photocatalysis technology has potential application in the field of energy and environment. How to expand visible light utilization and promote the separation efficiency of the carriers are the key issues for the high active photocatalysts preparation and future practical applications. In this work, a ternary metal sulfide Nb0.9Ta0.1S2 was prepared and used as an electron collector in the photocatalytic application. As a result, the generated electrons are quickly transferred to the surface of the composite to participate in the reaction. It was demonstrated that the photocatalytic activity of 2D-C3N4 was enhanced after the modification of Nb0.9Ta0.1S2. The Nb0.9Ta0.1S2/2D-C3N4 composite material was synthesized by solvothermal method. The composition of 5% Nb0.9Ta0.1S2/2D-C3N4 showed the highest H2 evolution rate of 1961.6 μmolg−1h−1, which was 6.6 times that of 2D-C3N4. The 15% Nb0.9Ta0.1S2/2D-C3N4 exhibited the best activity in Rhodamine B degradation rate of 97% in 2 h, which is 50% higher than that of 2D-C3N4. Nb0.9Ta0.1S2/2D-C3N4 can be used as electron trap to promote the effective separation of electron–hole pairs. This work provides benchmarks in exploring low-cost and efficient cocatalyst.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


Sign in / Sign up

Export Citation Format

Share Document