Influence of convective conditions on the peristaltic mechanism of power-law fluid through a slippery elastic porous tube with different waveforms

2019 ◽  
Vol 16 (2) ◽  
pp. 340-358 ◽  
Author(s):  
Manjunatha Gudekote ◽  
Rajashekhar Choudhari ◽  
Hanumesh Vaidya ◽  
Prasad K.V. ◽  
Viharika J.U.

Purpose The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account. Design/methodology/approach The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller. Findings The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter. Originality/value The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.

2018 ◽  
Vol 14 (5) ◽  
pp. 940-959 ◽  
Author(s):  
Hanumesh Vaidya ◽  
Manjunatha Gudekote ◽  
Rajashekhar Choudhari ◽  
Prasad K.V.

Purpose This paper is concerned with the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impacts of slip and heat transfer on the Herschel-Bulkley fluid are considered. The impacts of relevant parameters on flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids. The paper aims to discuss these issues. Design/methodology/approach The administering equations are solved utilizing long wavelength and low Reynolds number approximations, and exact solutions are acquired for velocity, temperature, flux and stream functions. Findings It is seen that the flow rate in a Newtonian fluid is high when contrasted with the Herschel-Bulkley model, and the inlet elastic radius and outlet elastic radius have opposite effects on the flow rate. Originality/value The analysis carried out in this paper is about the peristaltic transport of an incompressible non-Newtonian fluid in a porous elastic tube. The impact of slip and heat transfer on a Herschel-Bulkley fluid is taken into account. The impacts of relevant parameters on the flow rate and temperature are examined graphically. The examination incorporates Newtonian, Power-law and Bingham plastic fluids.


2019 ◽  
Vol 393 ◽  
pp. 16-30 ◽  
Author(s):  
Gudekote Manjunatha ◽  
Hanumesh Vaidya ◽  
Choudhari Rajashekhar ◽  
K.V. Prasad

The present paper investigates the role of heat transfer on peristaltic transport of Jeffery liquid in a porous tube. The effect of variable viscosity and slip impacts are taken into account. The closed-form solutions are obtained with the help of long wavelength and small Reynolds number. The results of physiological parameters on velocity, pressure rise, frictional force, trapped bolus, and temperature are plotted graphically. It is seen that the pressure rise and the frictional forces decline with an expansion in the viscosity parameter. The study further demonstrates that an increase in the value of the slip parameter significantly alters the pressure rise, frictional force, and temperature. Moreover, the volume of trapped bolus increases with an increase in the value of the velocity slip parameter.


1982 ◽  
Vol 104 (3) ◽  
pp. 182-186 ◽  
Author(s):  
J. B. Shukla ◽  
S. P. Gupta

Effects of the consistency variation on the peristaltic transport of a non-Newtonian power-law fluid fluid through a tube have been investigated by taking into account the existence of a peripheral layer. It is shown that the flow rate flux, for zero pressure drop, increases as the amplitude of the peristaltic wave increases but it decreases due to the pseudoplastic nature of the fluid. It is also noted that, for zero pressure drop, the flux does not depend on the consistency of peripheral layer while the friction decreases as this consistency decreases. However, for nonzero pressure drop, the flux increases and the friction force decreases as the consistency of peripheral layer fluid decreases.


2012 ◽  
Vol 198-199 ◽  
pp. 128-132
Author(s):  
Yong Ding ◽  
Fu Xin Yang ◽  
Jian Qiang Bao

The distribution of the speed and shear stress in power-law fluid with the laminar flow in the pipe were analyzed in this paper, then, the flow rate was calculated. Moreover, the stop pipe diameter was designed by calculating the balance of shear stress of power-law fluid in the pipe and the gravity of filling fluid. The conclusion: Ideal stop pipe diameter of power-law fluid is related to fluid properties, pressure and the acceleration of gravity.


2018 ◽  
Vol 23 (1) ◽  
pp. 187-211 ◽  
Author(s):  
A. Walicka

AbstractIn this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.


2020 ◽  
Vol 16 (5) ◽  
pp. 1041-1059
Author(s):  
Minakshi Poonia

PurposeIn the present computational study, the heat transfer and two-dimensional natural convection flow of non-Newtonian power-law fluid in a tilted rectangular enclosure is examined. The left wall of enclosure is subjected to spatially varying sinusoidal temperature distribution and right wall is cooled isothermally while the upper and lower walls are retained to be adiabatic. The flow is considered to be laminar, steady and incompressible under the influence of magnetic field. The governing mass, momentum and energy equations are transformed into dimensionless form in terms of stream function, vorticity and temperature.Design/methodology/approachThen resulted highly non-linear partial differential equations are solved computationally using Galerkin finite element method.FindingsThe exhaustive flow pattern and temperature fields are displayed through streamlines and isotherm contours for various parameters, namely, Prandtl number, Rayleigh number, Hartmann number by considering different power-law index and inclination angle. The effect of inclination angle on average Nusselt number is also shown graphically. This problem observes the potential vortex flow with elliptical core. The results show that the circular strength of the vortex formed reduces as the magnetic field strength grows. As the inclination angle increases the intensity of flow field decreases while the value of average Nusselt number increases.Originality/valueThis study has important applications in thermal management such as cooling techniques used in buildings, nuclear reactors, heat exchangers and power generators.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Jae Dong Chung ◽  
Yu-Ming Chu ◽  
M. Sheikholeslami ◽  
...  

AbstractThe present study examines homogeneous (HOM)–heterogeneous (HET) reaction in magnetohydrodynamic flow through a porous media on the surface of a rotating disk. Preceding investigations mainly concentrated on the catalysis for the rotating disk; we modeled the impact of HET catalysis in a permeable media over a rotating disk with slip condition at the boundary. The HOM reaction is followed by isothermal cubic autocatalysis, however, the HET reactions occur on the surface governed by first-order kinetics. Additionally, entropy minimization analysis is also conducted for the envisioned mathematical model. The similarity transformations are employed to convert the envisaged model into a non-dimensional form. The system of the modeled problem with ordinary differential equations is analyzed numerically by using MATLAB built-in bvp4c function. The behavior of the emerging parameters versus the thermal, concentration, and velocity distributions are depicted graphically with requisite discussion abiding the thumb rules. It is learned that the rate of the surface catalyzed reaction is strengthened if the interfacial area of the permeable media is enhanced. Thus, a spongy medium can significantly curtail the reaction time. It is also noticed that the amplitude of velocity and thermal profile is maximum for the smallest value of the velocity slip parameter. Heat transfer rate declines for thermophoresis and the Brownian motion parameter with respect to the thermal slip parameter. The cogency of the developed model is also validated by making a comparison of the existing results with a published article under some constraints. Excellent harmony between the two results is noted.


2004 ◽  
Vol 82 (7) ◽  
pp. 531-540 ◽  
Author(s):  
E M Abo-Eldahab ◽  
A M Salem

The problem of laminar mixed convection flow of non-Newtonian power-law fluids from a constantly rotating isothermal cone or disk in the presence of a uniform magnetic field is investigated in this paper. The effect of Joule heating is also considered. The governing partial-differential equations are transformed into ordinary differential equations using similarity transformations. The transformed equations, on the assumption of a small magnetic Reynolds number, are solved numerically by employing the shooting method. Graphical results for the velocity and temperature profiles as well as tabulated results for the skin friction and the Nusselt number for various parametric conditions are presented and discussed. PACS No.: 47.50.td


Author(s):  
G. Manjunatha ◽  
C. Rajashekhar ◽  
Hanumesh Vaidya ◽  
K. V. Prasad

This article analyses the effects of heat transfer and thermal conductivity on the peristaltic transport of Jeffery fluid through an inclined elastic tube with porous walls. The velocity slip and convective boundary conditions are taken into account. The modeled governing equations are solved analytically by considering the long wavelength and small Reynolds number approximations. The closed-form solutions are obtained for velocity, flow rate, and the theoretical determination of flow rate is calculated with the help of equilibrium condition given by Rubinow and Keller. A parametric analysis has been presented to study the effects of Jeffery parameter, thermal conductivity, Darcy number, the angle of inclination, velocity slip, Biot number, amplitude ratio, Prandtl number, and Eckert number on velocity, flow rate, and temperature are scrutinized. The streamlines show that the bolus moves with the same speed as that of the wave and further the study reveals that an increase in the Biot number reduces the magnitude of the temperature.


Sign in / Sign up

Export Citation Format

Share Document