Proper use of rice straw black liquor: lignin/silica derivatives as efficient green antioxidants for SBR rubber

2014 ◽  
Vol 43 (3) ◽  
pp. 159-174 ◽  
Author(s):  
Khlood S. Abdel Zaher ◽  
R.H. Swellem ◽  
Galal A.M. Nawwar ◽  
Fathy M. Abdelrazek ◽  
Salwa H. El-Sabbagh

Purpose – The purpose of this paper is to study the efficiency of lignin/silica and calcium lignate/calcium silicate as natural antioxidants in styrene-butadiene rubber (SBR) vulcanizates. Design/methodology/approach – It has been found that thermal aging data of the aged sample revealed that SBR vulcanizate undergoes crosslink reactions that lead to embrittlement and ultimately failure. Incorporation of lignin/silica or calcium lignate/calcium silicate, however, resulted in significant improvement of the degradation profile of the vulcanizates at 90±1°C. Loss of tensile strength and flexibility during aging of the SBR compounds with 8 phr lignin/silica or calcium lignate/calcium silicate was mild relative to unfilled polymer, indicating a restricted degradation due to the presence of the investigated compounds. The results obtained revealed that the investigated compounds are good antioxidant, and the evaluation was confirmed by physico-mechanical properties of the vulcanizates, FT-IR spectroscopy, transmission (TEM) and scanning (SEM) electron microscope. Findings – It was noticed that SBR vulcanizates having 8 phr of lignin/silica or calcium lignate/calcium silicate exhibited the best mechanical properties in comparison with other concentrations (1, 2, 4, 6 and 10 phr). Also, results revealed that the lignin/silica derivatives are efficient antioxidants in SBR vulcanizates compared to vulcanizates containing conventional antioxidants used in rubber industry, namely polymerized 2,2,4-trimethyl-1, 2-dihydroquinoline (TMQ), and N-isopropyl-N'-phenyl-P-phenylenediamine (IPPD). Research limitations/implications – All these results indicated that lignin/silica and calcium lignate/calcium silicate in SBR had good heat resistance and aging resistance, calcium lignate/calcium silicate has an application limitation as not all vulcanizates need to use CaCO3/calcium salts. Practical implications – Lignin is usually seen as a waste product of pulp and paper industry and is often used as fuel for the energy balance of the pulping process. It is simple isolation along with silica from rice straw and using it as an antioxidant added further practical utility for this waste. Originality/value – The importance of lignin/silica derivatives is arisen from their biodegradability and their ease availability from rice straw black liquor.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Selin Sökmen ◽  
Katja Oßwald ◽  
Katrin Reincke ◽  
Sybill Ilisch

High compatibility and good rubber–filler interactions are required in order to obtain high quality products. Rubber–filler and filler–filler interactions can be influenced by various material factors, such as the presence of processing aids. Although different processing aids, especially the plasticizers, and their effects on compatibility have been investigated in the literature, their influence on rubber–filler interactions in highly active filler reinforced mixtures is not explicit and has not been investigated in depth. For this purpose, the influence of treated distillate aromatic extract (TDAE) oil content and its addition time on interactions between silica and rubber chains were investigated in this study. Rubber–filler and filler–filler interactions of uncured and cured silica-filled SBR/BR blends were characterized by using rubber layer L concept and dynamic mechanical analysis, whereas mechanical properties were studied by tensile test and Shore A hardness. Five parts per hundred rubber (phr) TDAE addition at 0, 1.5, and 3 min of mixing were characterized to investigate the influence of TDAE addition time on rubber–filler interactions. It was observed that addition time of TDAE can influence the development of bounded rubber structure and the interfacial interactions, especially at short time of mixing, less than 5 min. Oil addition with silica at 1.5 min of mixing resulted in fast rubber layer development and a small reduction in storage shear modulus of uncured blends. The influence of oil content on rubber–filler and filler–filler interactions were investigated for the binary blends without oil, with 5 and 20 phr TDAE content. The addition of 5 phr oil resulted in a slight increase in rubber layer and 0.05 MPa reduction in Payne effect of uncured blends. The storage tensile modulus of vulcanizates at small strains decreased from 13.97 to 8.28 MPa after oil addition. Twenty parts per hundred rubber (phr) oil addition to binary blends caused rubber layer L to decrease from 0.45 to 0.42. The storage tensile modulus of the vulcanizates and its reduction with higher amplitudes were incontrovertibly high among the vulcanizates with lower oil content, which were 13.57 and 4.49 MPa, respectively. When any consequential change in mechanical properties of styrene–butadiene rubber (SBR)/butadiene rubber (BR) blends could not be observed at different TDAE addition time, increasing amount of oil in blends enhanced elongation at break, and decreased Shore A hardness and tensile strength.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 117
Author(s):  
Le Thuy Hang ◽  
Do Quoc Viet ◽  
Nguyen Pham Duy Linh ◽  
Vu Anh Doan ◽  
Hai-Linh Thi Dang ◽  
...  

In this study, we present the fabrication of nitrile butadiene rubber/waste leather fiber (NBR/WLF) composites with different weight percentages of WLF and NBR (0/100, 20/80, 30/70, 40/60, 50/50, 60/40 wt/wt). WLF was prepared by cutting the scrap leathers from the waste product of the Vietnamese leather industry. Subsequently, in order to make the short fibers, it was mixed by a hammer mill. The characteristics of WLF/NBR composites such as mechanical properties (tensile strength, tear strength, hardness), dynamic mechanical properties, toluene absorption, and morphology were carefully evaluated. As a result, the tensile strength and tear strength become larger with increasing WLF content from 0 to 50 wt% and they decrease when further increasing WLF content. The highest tensile strength of 12.5 MPa and tear strength of 72.47 N/mm were achieved with the WLF/NBR ratio of 50/50 wt%. Both hardness and resistance of the developed materials with toluene increased with increasing WLF content. The SEM results showed a good adhesion of NBR matrix and the WLF. The increasing of storage modulus (E’) in comparison with raw NBR showed good compatibility between WLF and NBR matrix. This research showed that the recycled material from waste leather and NBR was successfully prepared and has great potential for manufacturing products such as floor covering courts and playgrounds, etc.


2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


Author(s):  
Koushik Pal ◽  
Soumya Ghosh Chowdhury ◽  
Dipankar Mondal ◽  
Dipankar Chattopadhyay ◽  
Sanjay Kumar Bhattacharyya ◽  
...  

1995 ◽  
Vol 68 (2) ◽  
pp. 267-280 ◽  
Author(s):  
A. I. Isayev ◽  
J. Chen ◽  
A. Tukachinsky

Abstract A novel patented process and several reactors have been developed for devulcanization of waste rubbers. The technology is based on the use of the high power ultrasonics. The ultrasonic waves of certain levels in the presence of pressure and heat rapidly break up the three-dimensional network in crosslinked rubbers. The devulcanized rubber can be reprocessed, shaped and revulcanized in much the same way as a virgin rubber. The first laboratory reactor has been scaled up to pilot-plant level by the National Feedscrew and Machining, Inc. Various devulcanization experiments were carried out with model styrene-butadiene rubber (SBR) and with ground rubber tire (GRT). Curing behavior, Theological properties, and structural characteristics of rubbers devulcanized at various processing conditions were studied, as well as mechanical properties of revulcanized rubber samples. A possible mechanism of the devulcanization is discussed. The performed measurements indicate that the rubbers are partially devulcanized, and the devulcanization process is accompanied by certain degradation of the macromolecular chains. In spite of these observations, the processing conditions are identified at which the retention of the mechanical properties is found to be good. A further work is in progress to find the optimal conditions of devulcanization and to improve the selectivity of the process towards breaking up the chemical network only.


Sign in / Sign up

Export Citation Format

Share Document