New eco-friendly anticorrosive core-shell pigments

2015 ◽  
Vol 44 (5) ◽  
pp. 276-291 ◽  
Author(s):  
Nivin M Ahmed ◽  
Walaa M. Abd El-Gawad ◽  
Elham A. Youssef ◽  
Eglal R. Souaya

Purpose – The purpose of this paper is to present the preparation of core-shell ferrites/kaolin pigments and comparing their efficiency in protecting metal substrates to original ferrites which were also prepared. Core-shell structured particles are recently gaining lots of importance due to their exciting applications in different fields; these particles are constructed from cores and shells of different chemical compositions which show ultimately distinctive properties of varied materials different from their counterparts. The new core-shell pigment is based on shell of different ferrites that comprises only 10-20 per cent of the whole pigment on kaolin (cores) which is a cheap and abundant ore that comprises 80-90 per cent of the prepared pigment. The new pigments do not only comprise two different components, but they also contain pigment and extender in the same compound; their loadings in the paint formulations ranges from 50 and 75 per cent of the whole pigment. The work showed that these eco-friendly and cheap core-shell pigments are comparable in their efficiency to that of ferrites in protecting steel substrates. Design/methodology/approach – The different ferrites and ferrites/kaolin pigments were characterized using different analytical and spectrophotometric techniques, such as X-ray fluorescence, X-ray diffraction (XRD), scanning electron microscopy/energy-dispersive X-ray (SEM/EDAX) and transmission electron microscopy (TEM). Evaluation of these pigments was done using international standard testing methods (ASTM). After evaluation, the pigments were incorporated in solvent-based paint formulations based on medium oil-modified soya-bean dehydrated castor oil alkyd resin. The physico-mechanical properties of dry films and their corrosion properties using accelerated laboratory test in 3.5 per cent NaCl for 28 days were determined. Findings – The results of this work revealed that ferrite/kaolin core-shell pigments were close in their performance to that of the ferrite pigments in protection of steel, and at the same time, they verified good physico-mechanical properties. Practical implications – Treated kaolin can be applied in many industries beside pigment manufacture and paint formulations; it can be applied as reinforcing filler in rubber, plastics and ceramic composites. Also, it is applied in paper filling, paper coatings and electrical insulation. Originality/value – Ferrite and ferrite/kaolin are environmentally friendly and can replace other hazardous pigments (e.g. chromates) with almost the same quality in their performance; also, they can be used in industries other than paints, for example paper, rubber and plastics composites.

2015 ◽  
Vol 63 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Nivin M Ahmed ◽  
Walaa M. Abd El-Gawad ◽  
Eglal R. Souaya

Purpose – The purpose of this study is to prepare core-shell ferrites/kaolin pigments and compare their efficiency in protecting metal substrates to original ferrites. The new pigments are based on precipitating a shell of different ferrites that comprise only 10-20 per cent of the whole pigment on kaolin (core), which is a cheap and abundant ore comprising 80-90 per cent of the prepared pigment. These new pigments combine the properties of both its core and shell counter-parts, exhibiting improved corrosion protection properties. Furthermore, the pigments are represented as efficient, economically feasible and eco-friendly with comparable efficiency to that of original ferrites in protecting steel substrates. Design/methodology/approach – The new pigments were characterized using different analytical and spectrophotometric techniques, e.g. transmission electron microscopy, energy-dispersive X-ray analysis and X-ray fluorescence. The pigments were then incorporated in epoxy-based paint formulations. The physico-mechanical properties of dry films and their corrosion properties were tested using accelerated laboratory tests in 3.5 per cent NaCl for 28 days. Findings – The results of this study revealed that ferrite/kaolin core-shell pigments performance was almost close to that of the ferrite pigments in the protection of steel, and, at the same time, they confirmed good physico-mechanical properties. Practical implications – These pigments can be applied in other polymer composites, e.g. rubber and plastics, as fillers and reinforcing agents. Originality/value – Ferrite and ferrite/kaolin are environmentally friendly pigments, and they can impart high anticorrosive behavior to paint films with concomitant cost savings.


2014 ◽  
Vol 43 (4) ◽  
pp. 201-211 ◽  
Author(s):  
Nivin M. Ahmed ◽  
Walaa M. Abd El-Gawad ◽  
Elham A. Youssef ◽  
Eglal M. Souaya

Purpose – The purpose of this work is to prepare new core-shell pigments based on silca fume waste as core and ferrite pigments in the shell. Silica fume is a byproduct of the smelting process in the ferrosilicon industry. The reduction of high-purity quartz to silicon at temperatures up to 2,000°C produces SiO2 vapours which then oxidize and condense at low-temperature zones to tonnage amounts of tiny particles consisting of non-crystalline silica that is collected and sold rather than being land-filled because nowadays there is increasing environmental concern with regard to excessive volumes of solid waste hazards accumulation. Silica has no direct effect in protecting metals from corrosion, but on precipitating an effective anticorrosive pigment like ferrite on its surface with low concentrations, this can bring out new core-shell pigment with good anticorrosive performance and low cost. The new pigments will be constructed on a waste silica fume core comprising 80-85 per cent of its chemical structure and the ferrite shell that will be only about 20-15 per cent. These pigments are represented as efficient, economically feasible and eco-friendly. Design/methodology/approach – The different ferrites and ferrites/SiO2 pigments were characterized using different analytical and spectro-photometric techniques, such as X-ray diffraction, scanning electron microscopy/energy-dispersive X-ray and transmission electron microscopy (TEM). Evaluation of these pigments was done using international standard testing methods american standard testing methods (ASTM). After evaluation, the pigments were incorporated in solvent-based paint formulations based on medium oil-modified soya-bean-dehydrated castor oil alkyd resin. The physico-mechanical properties of dry films and their corrosion properties using accelerated laboratory test in 3.5 per cent sodium chloride for 28 days were determined. Findings – The results of this work revealed that ferrite/SiO2 core-shell pigments were close in their performance to that of the ferrite pigments in protection of steel, and at the same time, they verified good physico-mechanical properties. Practical implications – As silica fume has a large array of uses, these pigments can be applied in various industries such as painting, wooding coating, anti-corruption coating, powder coating, architectural paint and waterproof paints. Originality/value – Ferrite, ferrite/SiO2 are environmentally friendly pigments which can impart high anticorrosive behaviour to paint films with concomitant cost savings.


2018 ◽  
Vol 47 (2) ◽  
pp. 116-126 ◽  
Author(s):  
Nivin M. Ahmed ◽  
Walaa M. Abd El-Gawad ◽  
Eglal M.R. Souaya

Purpose Core-shell is structured particles having several chemical compositions. The advantage of these particles arise from their specific design, to be used in decreasing costs by using inexpensive material (natural ore or waste material) as carrier for thin shell of active material. This study aims to prepare ferrites/silica core-shell pigments and compare their inhibition efficiency to original ferrites. These pigments have shells of different ferrites that comprise 10-15 per cent of the prepared pigments on silica fume. Silica fume which is the core is a byproduct in the ferro–silicon industry; this core comprises 85-90 per cent of the prepared pigments. Design/methodology/approach The prepared core-shell pigments were characterized using transmission electron microscopy analysis, energy-dispersive X-ray analysis and sequential wavelength dispersive X-ray fluorescence. These pigments were integrated in epoxy-based paint formulations, and the physical, mechanical and corrosion properties of dry films were examined. The corrosion properties were studied by using immersion test in 3.5 per cent NaCl for 28 days. Findings This study showed that these new eco-friendly and inexpensive pigments are similar to ferrites in their inhibition performance, i.e. they exhibited high corrosion prevention. Research limitations/implications Domestic waste materials were reused in paints and only simple modification was used, and then, their effectiveness showed similar performance to that of the original pigments. Originality/value Ferrite and ferrite/silica pigments are environmentally friendly pigments that can replace other hazardous pigments (e.g. chromates) with almost the same quality in their performance; also, they can be used in industries other than paints (e.g. paper, rubber and plastics composites).


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


2012 ◽  
Vol 476-478 ◽  
pp. 1031-1035
Author(s):  
Wei Min Liu ◽  
Xing Ai ◽  
Jun Zhao ◽  
Yong Hui Zhou

Al2O3-TiC-ZrO2ceramic composites (ATZ) were fabricated by hot-pressed sintering. The phases and microstructure of the composites were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The relative density and mechanical properties (flexural strength, fracture toughness and Vicker’s hardness) of the composites were tested. The results show that the microstructure of the composites was the gray core-white rim. With the increase of sintering temperature, the relative density and mechanical properties of the composites increased first and then decreased. The composite sintered at 1705°C has the highest synthetical properties, and its relative density, flexural strength, fracture toughness and Vickers hardness are 98.3%,970MPa,6.0 MPa•m1/2and 20.5GPa, respectively.


2012 ◽  
Vol 186 ◽  
pp. 212-215
Author(s):  
Jacek Krawczyk ◽  
Włodzimierz Bogdanowicz ◽  
Grzegorz Dercz ◽  
Wojciech Gurdziel

Microstructure of terminal area of Al65Cu32.9Co2.1ingots (numbers indicate at.%), obtained via directional solidification was studied. Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray powder diffraction were applied. Point microanalysis by Scanning Electron Microscope was used for examination of chemical compositions of alloy phases. It was found that tetragonal θ phase of Al2Cu stoichiometric formula was the dominate phase (matrix). Additionally the alloy contained orthogonal set of nanofibres of Al7Cu2Co T phase with the average diameter of 50-500 nm and oval areas of hexagonal Al3(Cu,Co)2H-phase, surrounded by monoclinic AlCu η1phase rim. Inside some areas of H-phase cores of decagonal quasicrystalline D phase were observed.


NANO ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. 1950138 ◽  
Author(s):  
Sai Zhang ◽  
Shijun Yue ◽  
Jiajia Li ◽  
Jianbin Zheng ◽  
Guojie Gao

Au nanoparticles anchored on core–shell [Formula: see text]-Fe2O3@SnO2 nanospindles were successfully constructed through hydrothermal synthesis process and used for fabricating a novel nonenzymatic dopamine (DA) sensor. The structure and morphology of the Au/[Formula: see text]-Fe2O3@SnO2 trilaminar nanohybrid film were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical properties of the sensor were investigated by cyclic voltammetry and amperometry. The experimental results suggest that the composites have excellent catalytic property toward DA with a wide linear range from 0.5[Formula: see text][Formula: see text]M to 0.47[Formula: see text]mM, a low detection limit of 0.17[Formula: see text][Formula: see text]M (S/[Formula: see text]) and high sensitivity of 397.1[Formula: see text][Formula: see text]A[Formula: see text]mM[Formula: see text][Formula: see text]cm[Formula: see text]. In addition, the sensor exhibits long-term stability, good reproducibility and anti-interference.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 666
Author(s):  
Xinchuan Fan ◽  
Yue Hu ◽  
Yijun Zhang ◽  
Jiachen Lu ◽  
Xiaofeng Chen ◽  
...  

Reduced graphene oxide–epoxy grafted poly(styrene-co-acrylate) composites (GESA) were prepared by anchoring different amount of epoxy modified poly(styrene-co-acrylate) (EPSA) onto reduced graphene oxide (rGO) sheets through π–π electrostatic attraction. The GESA composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The anti-corrosion properties of rGO/EPSA composites were evaluated by electro-chemical impedance spectroscopy (EIS) in hydroxyl-polyacrylate coating, and the results revealed that the corrosion rate was decreased from 3.509 × 10−1 to 1.394 × 10−6 mm/a.


2018 ◽  
Vol 70 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Alaa Mohamed ◽  
Mohamed Hamdy ◽  
Mohamed Bayoumi ◽  
Tarek Osman

Purpose To enhance the tribological properties of nanogrease, one of the new technologies was used to synthesize a nanogrease having carbon nanotubes (CNTs) nanoparticles (NPs) with different concentrations. The microstructures of the synthesized NPs were characterized and evaluated by x-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). Tribological properties of the nanogrease were evaluated using a four-ball tester. The worn surface of four steel balls was investigated by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). Design/methodology/approach Grease was dissolved in chloroform (10 Wt.%), at 25 °C for 1 h. In parallel, functionalized CNTs with different volume concentrations (0.5, 1, 2 and 3 Wt.%) were dispersed in N, N-dimethylformamide. The mixture was stirred for 15 min and then sonicated (40 kHz, 150 W) for 30 min. After that, the mixture was added to the grease solution and magnetically stirred for 15 min and then sonicated for 2 h. Findings The results suggested that CNTs can enhance the antiwear and friction properties of nanogrease at 0.5 Wt.% CNTs to about 57 and 48 per cent, respectively. In addition, the weld load of the base oil containing 0.5 Wt.% CNTs was improved by 17 per cent compared with base grease. Originality/value This work describes the inexpensive and simple fabrication of nanogrease for improving the properties of lubricants, which improve power efficiency and extend lifetimes of mechanical equipment.


2016 ◽  
Vol 16 (4) ◽  
pp. 3914-3920 ◽  
Author(s):  
G. Z Li ◽  
F. H Liu ◽  
Z. S Chu ◽  
D. M Wu ◽  
L. B Yang ◽  
...  

SiO2@Y2MoO6:Eu3+ core–shell phosphors were prepared by the sol–gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Y2MoO6:Eu3+ core–shell phosphors. The XRD results demonstrated that the Y2MoO6:Eu3+ layers on the SiO2 spheres crystallized after being annealed at 700 °C and the crystallinity increased with raising the annealing temperature. The obtained core–shell phosphors have spherical shape with narrow size distribution (average size ca. 640 nm), non-agglomeration, and smooth surface. The thickness of the Y2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (70 nm for four deposition cycles). The Eu3+ shows a strong PL emission (dominated by 5D0–7F2 red emission at 614 nm) under the excitation of 347 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.


Sign in / Sign up

Export Citation Format

Share Document