Degradation of acetaminophen (ACT) by ozone/persulfate oxidation process: experimental and degradation pathways

2020 ◽  
Vol 49 (5) ◽  
pp. 363-368
Author(s):  
Maryam Khashij ◽  
Mohammad Mehralian ◽  
Zahra Goodarzvand Chegini

Purpose The purpose of this study to investigate acetaminophen (ACT) degradation efficiencies by using ozone/persulfate oxidation process in a batch reactor. In addition, the effects of various parameters on the ACT removal efficiency toward pathway inference of ACT degradation were investigated. Design/methodology/approach The experiments were in the 2 L glass vessels. Ozone gas with flow rate at 70 L.h−1 was produced by ozone generator. After the adjustment of the pH, various dosages of persulfate (1, 3, 5, 7 and 9 mmol.L−1) were then added to the 500 mL ACT-containing solution with 150 mg.L−1 of concentration. Afterward, ozone gas was diffused in glass vessels. The solution after reaction flowed into the storage tank for the detection. The investigated parameters included pH and the amount of ozone and persulfate addition. For comparison of the ACT degradation efficiency, ozone/persulfate, ozone and persulfate oxidation in reactor was carried out. The ACT concentration using a HPLC system equipped with 2998 PDA detector was determined at an absorbance of 242 nm. Findings ACT degradation percentage by using ozone or persulfate in the process were at 63.7% and 22.3%, respectively, whereas O3/persulfate oxidation process achieved degradation percentage at 91.4% in 30 min. Degradation efficiency of ACT was affected by different parameter like pH and addition of ozone or persulfate, and highest degradation obtained when pH and concentrations of persulfate and ozone was 10 and 3 mmol.L−1 and 60 mg.L−1, respectively. O3, OH• and SO4− were evidenced to be the radicals for degradation of ACT through direct and indirect oxidation. Gas chromatography–mass spectrometer analysis showed intermediates including N-(3,4-dihydroxyphenyl) formamide, hydroquinone, benzoic acid, 4-methylbenzene-1,2-diol, 4-aminophenol. Practical implications This study provided a simple and effective way for degradation of activated ACT as emerging contaminants from aqueous solution. This way was conducted to protect environment from one of the most important and abundant pharmaceutical and personal care product in aquatic environments. Originality/value There are two main innovations. One is that the novel process is performed successfully for pharmaceutical degradation. The other is that the optimized conditions are obtained. In addition, the effects of various parameters on the ACT removal efficiency toward pathway inference of ACT degradation were investigated.

2022 ◽  
Vol 961 (1) ◽  
pp. 012056
Author(s):  
A. B. Hameed ◽  
A. B. Dekhyl ◽  
W. M. Sh. Alabdraba

Abstract This study investigated the feasibility of using sodium hypochlorite as an advanced oxidation process to remove Acid Orange 12 azo dye from wastewater. For this purpose, batch reactor experiments were done. Several variables to address the efficiency of using this process were considered. These variables are initial pH (5, 7, and 9), the concentration of hypochlorite (50 – 250 mg/l), temperature (20-50) degrees Celsius, and time of electrolysis (1-75) min. also investigate the effects of UV on the process was done. Experimental results showed that the color removal efficiency using NaOCl with UV is more effective than NaOCl alone. The highest removal efficiency was obtained by increasing the concentration of NaOCl from (50-250mg/l) at PH=5. When the solution temperature was increased from (20-50) °C, the removal efficiency increased, and at the same time, the time required was reduced from (20-5) minutes to obtain the highest removal efficiency. The kinetic study also showed that the oxidation process follows a second-order reaction. The thermodynamic functions indicate that the response is spontaneous, endothermic, and increases randomness.


2017 ◽  
Vol 77 (4) ◽  
pp. 988-998 ◽  
Author(s):  
Tadesse Alemu ◽  
Andualem Mekonnen ◽  
Seyoum Leta

Abstract In the present study, a pilot scale horizontal subsurface flow constructed wetland (CW) system planted with Phragmites karka; longitudinal profile was studied. The wetland was fed with tannery wastewater, pretreated in a two-stage anaerobic digester followed by a sequence batch reactor. Samples from each CW were taken and analyzed using standard methods. The removal efficiency of the CW system in terms of biological oxygen demand (BOD), chemical oxygen demand (COD), Cr and total coliforms were 91.3%, 90%, 97.3% and 99%, respectively. The removal efficiency for TN, NO3− and NH4+-N were 77.7%, 66.3% and 67.7%, respectively. Similarly, the removal efficiency of SO42−, S2− and total suspended solids (TSS) were 71.8%, 88.7% and 81.2%, respectively. The concentration of COD, BOD, TN, NO3−N, NH4+-N, SO42 and S2− in the final treated effluent were 113.2 ± 52, 56 ± 18, 49.3 ± 13, 22.75 ± 20, 17.1 ± 6.75, 88 ± 120 and 0.4 ± 0.44 mg/L, respectively. Pollutants removal was decreased in the first 12 m and increased along the CW cells. P. karka development in the first cell of CW was poor, small in size and experiencing chlorosis, but clogging was higher in this area due to high organic matter settling, causing a partial surface flow. The performance of the pilot CW as a tertiary treatment showed that the effluent meets the permissible discharge standards.


2020 ◽  
Vol 82 (9) ◽  
pp. 1795-1807 ◽  
Author(s):  
Dejun Bian ◽  
Zebing Nie ◽  
Fan Wang ◽  
Shengshu Ai ◽  
Suiyi Zhu ◽  
...  

Abstract A micro-pressure swirl reactor (MPSR) was developed for carbon and nitrogen removal of wastewater, in which dissolved oxygen (DO) gradient and internal circulation could be created by setting the aerators along one side of the reactor, and micro-pressure could be realized by sealing most of the top cap and increasing the outlet water level. In this study, velocity and DO distribution in the reactor was measured, removal performance treating high-concentration wastewater was investigated, and the main functional microorganisms were analyzed. The experiment results indicated that there was stable swirl flow and spatial DO gradient in MPSR. Operated in sequencing batch reactor mode, distinct biological environments spatially and temporally were created. Under the average influent condition of chemical oxygen demand (COD) concentration of 2,884 mg/L and total nitrogen (TN) of 184 mg/L, COD removal efficiency and removal loading was 98% and 1.8 kgCOD/(m3·d) respectively, and TN removal efficiency and removal loading reached up to 90% and 0.11 kgTN/(m3·d) respectively. With efficient utilization of DO and simpler configuration for simultaneous nitrification and denitrification, the MPSR has the potential of treating high-concentration wastewater at lower cost.


Author(s):  
Bikash Adhikari ◽  
Shilpa Koirala

Along with the population, organic waste has been rising significantly in recent years. The resulting uncontrollable waste loads and conventional methods of waste treatment have begun to cause chaos at the landfill sites. This study evaluates the performance of an anaerobic digestion process using batch reactors for the treatment of landfill leachate collected from the Sisdole landfill site in Nuwakot, Nepal. A lab-scale anaerobic batch reactor was set up in Kathmandu University, Nepal. Using an anaerobic digestion process, COD values of the leachate decreased from 2230 mg/l to 1125 mg/l (removal efficiency of ~50%), whereas total solids concentration decreased from 1925 to 925 mg/L under a retention time of 10 days. In addition, Monod’s model was established to design an Anaerobic Sequential Batch Reactor to achieve better performance, resulting in 85% removal efficiency for the leachate treatment. Overall, this study analyzed the anaerobic digestion process on the landfill leachate of Sisdole, and modeled the process to identify the conditions required for increasing the efficiency of treatment of Sisdole landfill leachate.


2020 ◽  
Vol 6 (4) ◽  
pp. 1069-1082
Author(s):  
Muhammad B. Asif ◽  
Jason P. van de Merwe ◽  
Frederic D. L. Leusch ◽  
Biplob K. Pramanik ◽  
William E. Price ◽  
...  

This study presents the performance of an integrated laccase and persulfate oxidation process for trace organic contaminant degradation and elucidates the performance governing factors.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 720 ◽  
Author(s):  
Jin-Pil Kim ◽  
Dal Rae Jin ◽  
Wonseok Lee ◽  
Minhee Chae ◽  
Junwon Park

In this study, livestock wastewater treatment plants in South Korea were monitored to determine the characteristics of influent and effluent wastewater, containing four types of veterinary antibiotics (sulfamethazine, sulfathiazole, chlortetracycline, oxytetracycline), and the removal efficiencies of different treatment processes. Chlortetracycline had the highest average influent concentration (483.7 μg/L), followed by sulfamethazine (251.2 μg/L), sulfathiazole (230.8 μg/L) and oxytetracycline (25.7 μg/L), at five livestock wastewater treatment plants. Sulfathiazole had the highest average effluent concentration (28.2 μg/L), followed by sulfamethazine (20.8 μg/L) and chlortetracycline (11.5 μg/L), while no oxytetracycline was detected. For veterinary antibiotics in the wastewater, a removal efficiency of at least 90% was observed with five types of treatment processes, including a bio-ceramic sequencing batch reactor, liquid-phase flotation, membrane bioreactor, bioreactor plus ultrafiltration (BIOSUF) and bio best bacillus systems. Moreover, this study evaluated the removal efficiency via laboratory-scale experiments on the conventional contaminants, such as organic matter, nitrogen, phosphorus and veterinary antibiotics. This was done using the hydraulic retention time (HRT), under three temporal conditions (14 h, 18 h, 27 h), using the anaerobic–anoxic–oxic (A2O) process, in an attempt to assess the combined livestock wastewater treatment process where the livestock wastewater is treated until certain levels of water quality are achieved, and then the effluent is discharged to nearby sewage treatment plants for further treatment. The removal efficiencies of veterinary antibiotics, especially oxytetracycline and chlortetracycline, were 86.5–88.8% and 87.9–90.8%, respectively, exhibiting no significant differences under various HRT conditions. The removal efficiency of sulfamethazine was at least 20% higher at HRT = 27 h than at HRT = 14 h, indicating that sulfamethazine was efficiently removed in the A2O process with increased HRT. This study is expected to promote a comprehensive understanding of the behavior and removal of veterinary antibiotics in the livestock wastewater treatment plants of South Korea.


2010 ◽  
Vol 113-116 ◽  
pp. 87-90
Author(s):  
Qing Jie Xie

The microwave irradiation (MI) was found that it had significantly treatment efficiency for pollutants removal. It was developed to treat the alage in this paper. The granular activated carbon (GAC) was used as catalyst. The effect of the acting time, MI power, GAC amount and the initial concentration on alage removal were studied. The results showed: with the increasing of the acting time, MI power, GAC amount the alage removal rate were increased, but the effect of the initial concentration to alage removal was opposite; the optimum value of acting time, MI power and GAC amount were 5min, 450W and 3g respectively with the alage removal efficiency reached up to 100%. It also showed that with the alage removed under the MI the COD, SS were removed too. It was discovered that the oxidation process was basically in conformity with the first-order dynamic reaction(ln(C/C0)=-0.9371t+0.6744(R2=0.9472)).


Circuit World ◽  
2017 ◽  
Vol 43 (3) ◽  
pp. 131-138 ◽  
Author(s):  
Huirong He ◽  
Jida Chen ◽  
Shengtao Zhang ◽  
Minhui Liao ◽  
Lingxing Li ◽  
...  

Purpose This paper aims to propose a modified full-additive method (MFAM) to fabricate fine copper lines for high density interconnection (HDI) printed circuit boards (PCBs). In addition, the surface of the fine copper lines is treated with a brown oxidation process to obtain good adhesion between the copper and the dielectric resin. Design/methodology/approach Fine copper lines fabricated by MFAM were observed to evaluate the undercut quality, in comparison to undercut quality of copper lines fabricated by the semi-additive method and the subtractive method. The effect of the thickness of the dry film on the quality of the copper plating was investigated to obtain the regular shape of fine lines. The fine copper lines treated with the brown oxidation process were also examined to generate a coarse surface microstructure to improve the adhesion between the copper and the dielectric resin. The cross section and surface of as-fabricated fine copper lines were characterized using an optical microscope, a scanning electron microscope and an atomic force microscope. Findings MFAM has the potential to fabricate high-performance fine copper lines for HDI PCBs. Undercut of as-fabricated fine copper lines could be prevented to meet the design requirement of impedance. In addition, fine copper lines exhibit enough adhesive force to laminate with dielectric resin after the brown oxidation process. Originality/value MFAM, with the advantages of high efficiency and being a facile process, is developed to fabricate high-quality fine copper lines for industrial HDI PCB manufacture.


Sign in / Sign up

Export Citation Format

Share Document